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Abstract

The adaptive stencil linear deviation method is introduced to find accurate approximations to
solutions of partial differential equations (PDEs) known as wave equations. These PDE’s describe
how wave information propagates from one point in time to the next by modeling displacement
from equililbrium. Initially, the exact position of the wave is known, and the position of the wave
at future time points is to be determined. In practice, however, the exact position may only be
known at a finite number of points in space.

One of the primary focuses of the research involves approximating the space derivative of the
displacement variable. Finite differences can be used to approximate derivatives using a finite
number of data points. In fact, when using four points in space to approximate the first derivative,
there are three methods that could be used, each using different data sets. The way in which
one selects from among these three derivative approximations can greatly affect the accuracy of
the approximation (especially if the data exhibits shocks or discontinuities). We have developed a
method for selecting the approximation based on the amount of linearity in the data. It has been
shown that this Linear Deviation method outperforms standard methods.




Introduction The purpose of this research was to find accurate approximations to solutions
of hyperbolic partial differential equations (PDEs). Hyperbolic PDEs, including wave equations,
are used to model nearly all finite speed wave transmissions such as sound, radar, sonar, and light.
One example of a hyperbolic PDE is the acoustic wave equation which models a three dimensional,
multi-way wave. In [4], it is shown that the larger acoustic problem can be approximated by a
collection of one-dimensional, one-way wave equations

U +uy =0 u(z,0) = f(x). (1)

In this equation, u(z, ) measures the displacement of the wave from rest at each point in space (z)
and time (t). This equation describes how the wave changes from one point in time to the next.
Initially (¢ = 0), we know the exact position of the wave at any point in time, so we are left to
determine the position of the wave at future times (¢ > 0). One added complication is the fact that
we are only given a finite amount of information (the value at a limited number of points).
Methods To approximate the value of the solution u at points in time after the initial time,
we used a the Taylor Series expansion [1,3]
2

u(z,t + At) = u(z,t) + Atuy(z,t) + (A;:) ug(z,t) + ... (2)

We can approximate the value of a function at a later point in time provided we know the derivative

values. Since, we do not have the entire function, (only a finite number of data points in time and
space), we need to approximate these derivatives.
The initial data provides information in space, but at only a single time, making time derivative

approximations difficult. From the PDE (1) we know u; = —u,, from which follows that wus; = .
Substituting this into the Taylor Series (2), we get the following expansion
| (A1)’
u(z,t + At) = u(z,t) — Atuy(z,t) + Ugz (T, ) — ... (3)

2!
This new equation provides a method of determining the position of the wave at later points in time
in terms of space derivatives. Therefore, one of the primary focuses of the research involved ap-
proximating the space derivative u,. Finite differences [1,3] can be used to approximate derivatives
using a finite number of data points. In fact, when using four points in space to approximate the u,
there are three methods (stencils) that could be used to approximate u,, each using different data
sets. The way in which one selects from among these three derivative approximations is another of
our primary interests.

One method (developed in the mid 1990s, see [4]) is referred to as the ENO method. ENO first
selects from two sets of three points, selecting the set that forms the flatter interpolating parabola.
It then selects one of two points to add to the set of three.

As a result of our research, we have found an alternative to the ENO method. This new method,
the 2-pt method, selects the data with the least linear deviation. It does this by forming a line
between two points and then selecting the two additional points (from a set of 4 points) which are
closest to the line.

With either method (ENO or the 2-pt) we can approximate the second derivative of u with
respect to = (uz) in two different ways. With each method (ENO or the 2-pt), one could first
find u, and then reapply the same method to the u, data to arrive at an approximation to .
A second approach would be to modify the routines so that the second derivative is approximated
directly. The first approach requires nearly twice as many calculations. Acceptable increases in



computational complexity are those increases which lead to a better approximation. As mentioned
in the results below, the more computationally complex method does not lead to significant gains
and is thus inferior.

An alternative to the Taylor series approach (2) is the Runge-Kutta [1,3] approach.

u(x,t + At) = u(z,t) + At(—byuy(z,t) — by(us — Atauy),) (4)

where a, by, and b, satisfy certain constraints. The results section explains why this approach did
not lead to increased accuracy.

Results and Conclusions To find which method does better, we test the various methods
against a set of problems for which we can determine the exact solution. We then compare the
approximation to the exact using the /4, {; and the l,, norms [1]. The [; norm sums up the
differences between the true solution and the approximation. The [, norm calculates the sum of
the squared differences between the true solution and the approximation. The /., norm finds the
maximum difference between the true solution and the approximation.

Using these norms to calculate error and the amount of work (number of calculations needed)
to calculate u, and u,,, we were able to compare the various methods.

In this research, a series of modifications were made to the original ENO. One modification
was using the first derivative, u,, the second derivative, u,,, and the third derivative, .., to
approximate the solution. Another modification was in how the derivatives were approximated,
whether the same methods were reapplied or the derivatives were calculated directly. The last
modification was using either the Taylor series approach (3) or the Runge-Kutta approach (4)to
approximate the derivatives.

In addition, we created our own (2-pt) method and analyzed the changes in accuracy/complexity
when this method was subjected to the same modifications.

The results of these modifications to ENO and the 2-pt method are as follows. When using
the first derivative, ENO did well, but the 2-pt method did poorly. Using the second derivative,
ENO did not improve much while the 2-pt method improved greatly doing better than ENO. Using
the third derivative, both methods improved somewhat if larger time steps were used, but had
results similar to the second derivative if small time steps were taken. In all cases, calculating the
derivatives directly did better than reapplying the methods. Also, the Runge-Kutta approach did
not do as well as the Taylor Series approach.

In conclusion, we have found that there are significant gains when using the second derivative
term in the Taylor Series time expansion when using the data to calculate both w, and wu,, directly.
In this setting, the 2-pt method does better than the ENO method with a comparable amount of
calculations. We also found that the Runge-Kutta approach doesn’t seem necessary since by using
u, and a linear operation, it collapses down to the Taylor Series time expansion.
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Other Presentations

I have given a presentation at the Argonne National Laboratory Symposium for Undergraduates in
Science, Engineering, and Mathematics that took place on November 5 - 6, 1999. I have also giving
this presentation to the Math Club here at the University of Wisconsin La Crosse.

Meeting Information

The Sixty-Eighth Annual Meeting of the MAA Wisconsin Section will take place at the University
of Wisconsin - Superior on April 14 - 15, 2000. It is a state event for both undergraduates and
professors of mathematics in which I will be giving an oral presentation on the research that I did
last summer. Myself and many of the professors in the mathematics department along with some
students will be driving to this event.

Budget

I will be staying at a hotel for two nights at $52.00 per night. I will be traveling 500 miles at
$0.19/mile. This totals $1°99.00 and the Mathematics Department has agreed to cover all other
costs associated with this trip.
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