The Fourth Calculus Competition of UW-La Crosse

Date: 11/7/15

Name

Score_____

Directions: Each problem is worth 10 points. Please show your work on the answer sheets to get full credit.

- 1. Calculate the limit $\lim_{x\to 0} \frac{\ln \cos x}{x^2}$.
- 2. Given $\lim_{x\to 0} \frac{x + a \ln(1+x) + bx \sin x}{kx^3} = 1$, where a, b, and k are constants. Find the values of a, b, and k.

3. If function
$$f(x) = \lim_{t \to 0} \left(1 + \frac{\sin t}{x}\right)^{\frac{x^2}{t}}$$
. Is f continuous on $(-\infty, \infty)$? Justify your answer.

4. Given
$$f(x) = \begin{cases} x^{\alpha} \cos \frac{1}{x^{\beta}} & x > 0\\ 0 & x \le 0 \end{cases}$$
, where $\alpha > 0$ and $\beta > 0$. If $f'(x)$ is continuous at $x = 0$,

what is your conclusion on the value of $\alpha - \beta$?

5. Given
$$f(x) = x^2 \cdot 2^x$$
. Find $f^{(n)}(0)$.

6. Suppose f(a) = 0 and both of f'(x) and f''(x) are positive on $[a, \infty)$. Assume b > a and P(b, f(b)) is a point on the curve y = f(x). If the tangent line to y = f(x) at P has the *x*-intercept $(x_0, 0)$, prove that $a < x_0 < b$.

7. Suppose f(x) is continuous and $\phi(x) = \int_0^{x^2} x f(t) dt$. If $\phi(1) = 1$ and $\phi'(1) = 5$, find f(1).

8. Suppose $f(x) = \int_0^x e^{-u} \cos u \, du$. Find the absolute minimum and maximum values of f on the interval $[0, \pi]$.

9. Calculate the integral
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\sin x}{1 + \cos x} + |x| \right) dx.$$

10. Calculate the integral
$$\int \frac{dx}{(1+e^x)^2}$$
.