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Overview

[) Introduction to Nuclear Astrophysics:
From the very small to the very large
(32 orders of magnitude in dimension, 60 in energy):
how quantum subtleties alter astronomical events,
and the origin of the elements

II) Connecting Nuclei to the Stars:
Studying stars in the laboratory,
with some nuclear reaction examples

[1I) Improving our Understanding of Nucleosynthesis:
Better science with better targetry



“We are made of star stuff.” - Carl Sagan
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The Big Questions:
What is the origin of the elements in the cosmos?
What are the nuclear reactions that drive stars and
stellar explosions?



Welcome to Your Universe




Sirius is the brightest star in the night sky

in 1844, the German astronomer Friedrich Bessel deduced
that Sirius is actually a binary system

the small, binary companion, Sirius B (the “pup” star), was
first observed in 1862 by American astronomer Alvin Clark

in 1915, observation led to the discovery that Sirius B was a
white dwarf — much hotter and denser than its larger
companion



Sirius

Sirius B

Hubble image




What's so iiecial)ut a white dwarf?

» white dwartf stars are the very hot and very dense
remnants of dead main-sequence stars (the burned-
out cores, rich in carbon, oxygen, and neon, and
held in shape only by electron degeneracy pressure)

* when they're close to another star, their large

gravitational pull can cause material to fall onto the
dwarf's surface (“accrete”)




What's so

ci_a‘ut a white dwart?
; . p

a T T

that accreting material gets hot and dense, too, and
then flash! a runaway thermonuclear explosion on
the white dwarf surface — a nova




From Sirius, to Mira... to the Universe

-t

x-ray image of accretion! —

About 50% of all stars are in
binary systems!

Novae aren't rare (~40/yr) -
Sirius B won't become one
(the companions are too distant),
but the Mira binary system is in
the process right now!




Explosive Astrophysical Environments

® Other EXPIOSiVe EVentS 3.2.2014 M82 with and without Supernova SN2014) 5.5.2007
* novae
e Xx-ray bursts
f f
* supernovae 2 ’
e reactions proceed faster than * "N\ TN

competing decay

Thomas Becker / www.zumnordlicht.com / WFS-Berlin

e final isotopic abundances
determined by network of
reactions on short-lived,
highly unstable nuclei

e these environments arethe . = | - 7 0% L0
source of much of the heavy
elements in the universe

...and they're the subject of lots of interdisciplinary study!




Maxwell-Boltzmann distribution

Astrophysical Nuclear Reactions

Probability
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Astrophysical Nuclear Reactions

— Maxwell-Boltzmann distribution

probability of a particle having a given 'SSJ
energy for environmental temperature
— Barrier penetrability
quantum likelihood of particles getting
close enough to react at a given energy
— Convolution = “Gamow peak”
nuclear levels falling within this energy range will
contribute strongly to the stellar reaction rate

ik~

To quantify the contribution from an astrophysical nuclear reaction,

we need to measure either:

the rate due to each of the levels in the Gamow peak directly,
or the nuclear properties of these same levels

(energies, spins, decay branches, spectroscopic factors)

from which the rate can be indirectly calculated




Bringing the Stars into the Lab

e Instead of both particles moving, we hold one steady (the target) and
accelerate the other into it (the beam) — it's the same reaction in the
center of mass frame — then we measure one or more of the reaction
products

» To measure the astrophysical rate directly, we need to accelerate the
particles to the same energy that they.have in the star
* not so easy, though: very specific (low) beam energy, and the rates are
actually very small (one event in a billion or less)
 the lower the energy (getting closer to the Gamow peak), the lower the
reaction rate

 When measuring the nuclear properties (indirect), you can pick
reactions which are more favorable
e beam energy is not so critical, and rates can be higher (one in a hundred
thousand, one in a million...)
e use a reaction which more easily populates the same nuclear levels



nuclear physics:
reaction rates, measuring the

parameters .

nuclear reactions
involved in these
explosive scenarios
gives us insight into
how they work

|

now we can start to
answer those
questions!
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(but there's still a lot we don't know)



How do we measure these nuclear reaction rates?
— Directly, when possible

— Indirectly, most of the time
— New techniques, new facilities, new equipment...

How about an example?



The observable *°Al

1) An excess of Mg is found
in the Allende meteorite,
indicating the presence of “°Al

decay...




The observable *°Al

1) An excess of Mg is found
in the Allende meteorite,
indicating the presence of “°Al
decay

2) Several space-based
telescopes (HEAOQO,
COMPTEL, INTEGRAL...)
observe the characteristic 1.809
MeV gamma-ray line of
radioactive *°Al...

Intensity (104xphotons cm—= s~ rad-1 keV-)

1,820

I | I
1,810
Energy (keV)

Al was first radioisotope directly
observed in space,

by high-precision, satellite-based
(expensive) instruments

1,815

1,800 1,805




The observable “°Al

1) An excess of Mg is found
in the Allende meteorite,
indicating the presence of “°Al
decay

CGRO ! COMPTEL 1.8 MeV, 5 Years Observing Time

2) Several space-based
telescopes (HEAOQO,
COMPTEL, INTEGRAL...)
observe the characteristic 1.809
MeV gamma-ray line of
radioactive *Al

3) COMPTEL maps the 1.809
MeV gamma across the Milky B 5
Way galaxy... sechuncta, A

Ry £, 1997
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The observable *°Al

1) An excess of Mg is found
in the Allende meteorite,
indicating the presence of “°Al
decay

2) Several space-based
telescopes (HEAOQO,
COMPTEL, INTEGRAL...)
observe the characteristic 1.809
MeV gamma-ray line of

radioactive “°Al soE
= (B
i) L
3) COMPTEL maps the 1.809 g 05 _
MeV gamma across the Milky ) ;
Way galaxy > 0.0F
: L
k] L,
4) INTEGRAL shows that the £ 05F
sources are near massive stars, & i of :
and that the Al co-rotates with Bl

e

the galactic plane... Galactic longitude (deg)



The observable *°Al

5) The direct observation of
Al decay is particularly
important — and useful —
because of the properties of
this radioactive isotope:

e its lifetime (~700,000 years)
is long enough to outlast the
length of an astrophysical
explosion, but much shorter
than the age of typical stars or
the galaxy (so it's recent)

e it can be tracked as it moves
through the interstellar medium
e since the flux is reasonably
constant, it must be actively
produced in the universe in
order for us to observe it!

So how is it being produced?



“Al in the laboratory

*Al is particularly interesting because it provides a
direct link between the astrophysics environment and
nuclear physics we can study inthe laboratory

Many reaction sequences affect the final *Al galactic
abundance... Let's take a look at the *Al(p,y)”Si
reaction, which destroys “Al and thus depletes the
amount we could observe astronomically

note: “Al(p,y)”Si means *Al+p — y-ray + “Si



“Al in the laboratory: “°Al(p,y)*’Si

Direct measurement

~ TR k ending
PRL 96, 252501 (2006) PHYSICAL REVIEW LETTERS 30 JUNE 2006

Measurement of the E.,, = 184 keV Resonance Strength in the 2% Al(p, ¥)*’Si Reaction

C. Ruiz,"* A. Parikh,™" J. José,”* L. Buchmann,' J. A. Caggiano," A. A. Chen,” J. A. Clark,® H. Crawford,” B. Davids,"
J.M. D’ Auria,” C. Davis,' C. Deibel,” L. Erikson,’ L. Fogarty,® D. Frekers,” U. Greife,” A. Hussein,'" D. A. Hutcheon,'
M. Huyse,'' C. Jewett,” A.M. Laird,"” R. Lewis,” P. Mumby-Croft,'* A. Olin,' D. E Ottewell,' C. V. Ouellet,” P. Parker,”
1. Pearson.” G. Ruprech[k' M. Trinczek.' C. Vockenhuber,' and C. Wrede”
'YIRIUME Vancowver, BC VBT 243, Canada

observables: just count events

25~
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“Al in the laboratory: “°Al(p,y)*’Si

Indirect measurement observables: peak energies, intensities,
how intensity changes with angle,

amount of beam measure particle transfer | correlations between particles...
necessary: instead of particle capture “| 3 §
5x10° pps il : .
amount of target .5 b & > £
necessary: 2% & 3 S
~10 #/cm? SR
many levels at once detectors s o 2

able to study resonances that were
10,000 to 100,000,000 weaker 3
than the direct measurement!
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e Direct measurement — great, but very limited
e Indirect measurements — powerful, informative tools
e Ongoing questions — it's actually very complicated!

26 e - other destruction reactions?
= 3t - creation reactions?

- competing reactions?
- higher energy resonances?

63 T i
- lifetimes?

- astrophysical environment?

- % Al |
% ?.1[}5\; % ...our knowledge of “*°Al in the

universe is still very limited!

» Other isotopes of interest to astrophysics but which are
even more difficult to study?

How do we proceed?



Pushing the Boundaries
of Nuclear Astrophysics

— New techniques

.
o

— New facilities

— New equipment



using FR-ADWA vs standard DWBA results in a some nuclear parameters
much better match between data sets in 1°Be(d,p)!'Be require theoretical models
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Detector

ORNL lead!

New Detector Systems

ORRUBA, SuperORRUBA, HAGRID,
VANDLE, GODDESS, SECAR...

- Lots of time, effort, and money invested
- Several prestigious DOE Early Career awards



~$900M, completion 2022 ARy

Reaccelerated beams
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Layout of the accelerator and experimental systems and the experimental

areas of the Facility for Rare |sotope Beams.

beams of short-lived, very
exotic nuclei such as those
found in exploding stars

— will be the focus

- of the low energy NP

community in the
US, allowing us to
push the boundaries
of nuclear physics

— provides multiple
experimental areas
for different types of
studies



Low energy, exotic S FACILITY FOR
beams: perfect for B RARE ISOTOPE BEAMS

astrophysics!
ReA3 Hall -

already providing
some beams

So we have |
all these beams being
developed, but one piece
is still missing...



new and

Targets! — What's Needed? e e

detector
small reaction rates systems
exotic beams
(low energy, . . .
low intensity)

light- 1on hard-to-detect
induced reaction
reactions products

A target is needed which is dense, highly localized, and pure

* dense: ~10" nuclei/cm’ depending on the nuclear reaction rate to
be measured (10*" ~ solid)

* localized: target size ~ beam spot size, and thin to provide good
energy/angle resolution

e pure: scattered contaminants contribute to background, which
can't be tolerated in low-stats measurements



“Million-Dollar Beams
and Ten-Cent Targets”

So what do we actually use for targets?
...Development here has been largely ignored!

— commonly using thin metal and plastic foils, implanted targets, small
gas cells, which are full of contaminants and easily degrade

— these types of targets won't work for everything... we're not leveraging
the major developments being made in other aspects of nuclear astro



A Solution? Gas Jet Targets

Create a jet of light gas (helium or hydrogen) — with the correct
engineering, a target that is

dense, pure, homogeneous, and localized

can be produced... state-of-the-art targetry!

JENSi -

We have designed, built and tested the Jet Experiments in Nuclear
Structure and Astrophysics (JENSA) gas jet target, a ~$2M, 3 year,
multi-institutional project

Commissioning done at ORNL, system now on dedicated beamline
(one of only three) at ReA3!

See K.A. Chipps et al, Nucl. Instr. & Methods A 763 (2014) 553



Basic Components

.- COMPRESSOR
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large target chamber to
accommodate next-gen
detector systems

pumping stages (turbos)
with restrictive apertures
provide vacuum

turbo on central chamber
backed by a roots blower

series of large roots blowers
for inner and outer receiver
move large volumes of gas

roots blower stages backed
by multistage roots (msr)

pumps to handle gas flow

custom compressor to return
gas to high reservoir pressure

scroll pump for evacuating

system during startup/shutdown

control and monitoring systems

Pdc Machines
Compressor
POGC-4-100-5000150)




large target chamber to
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custom compressor to return
gas to high reservoir pressure

scroll pump for evacuating
system during startup/shutdown

control and monitoring systems




large target chamber to
accommodate next-gen
detector systems
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series of large roots blowers
for inner and outer receiver
move large volumes of gas

roots blower stages backed
by multistage roots (msr)
pumps to handle gas flow

custom compressor to return
gas to high reservoir pressure

4 X Ebara

scroll pump for evacuating
system during startup/shutdown
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control and monitoring systems
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...and most important, the Jet

utilizes two different laval (convergent-
divergent) nozzles (0.8mm and 1.1mm
“neck”) - like the inside of a jet engine!

receivers set below the nozzle catch the
expanding gas (various sizes to match jet)

14mm “free jet” region (adjustable)

for detectors

@ notice all the space
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each datum is one pixel of the detector - we can “map” the density distribution of the jet



1ZOSH

no target ladder shadowing!
major improvement for
indirect studies
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So... what next?

The best way to demonstrate the full capability of the
JENSA gas jet target is to give another astrophysics
example



Another Astrophysical Observable? '°F
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S-factor (MeV bam)

F in novae: “F(p,0)*>O

e Direct measurements have been made at some energies, but the
rate is so small that we weren't able to determine everything
(recall we need high beam intensity and long experiments...)

* The biggest gap in our knowledge of this explosive stellar
reaction rate is the behavior at energies below the reaction
threshold — particularly, the parameters of a single nuclear level!
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Indirectly: ““Ne(p,d)"”Ne

* Problem is interference — the nuclear spin of the level
in question manifests in the quantum wavefunction of
that state, and this wave can interfere constructively or
destructively with other resonances

* All we need to know is the spin of that state, which we
can determine by studying the angular momentum
transferred to/from that level — this is a perfect
opportunity for an indirect study!

* With a proton beam and a “Ne target, use the (p,d)
transfer reaction to populate levels in "Ne — the same
levels in this compound nucleus as during “F(p,a)"O:

F+p - "Ne' - SO+a



“‘Ne(p,d)”Ne
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Demonstrating the. Power of JENSA :
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Demonstrating the. Power of JENSA :

100 =

Counts
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Matching that distribution

to theoretical curves confirms it:
the properties of this important
nuclear level have been indirectly
measured via *’Ne(p,d)

using JENSA,

filling the remaining gap in our
understanding of *F(p,a)*O
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On to the Future

* There are a multitude of opportunities for important,
astrophysics-motivated, indirect measurements of
nuclear properties just like the examples I've shown!

 Many indirect (and also some direct) measurements are
possible, using JENSA gas jets of 'H, ‘H (D), ‘He, and
‘He — and someone needs to lead the effort

 Many beams from ReA3/FRIB are those of interest to
astrophysics, most of which have not been available
before now (others are available at much higher
intensities than ever before)

* Improvements to reaction formalism/theory mean we
can be more confident of our derived reaction rates
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One Intriguing New Possibility:
°°Ni, Another Astrophysics Observable
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dol:10.1038/nature13672 E we _—2.{._9&_ e -
: 13 .
R 7 s e i
: R AR P ' ' 3
H H » b o5x106 L 0EEEelo bl -
Cobalt-56 y-ray emission lines from the typela S R bl ]
g LaRTBIR ARTR 2 el
supernova 2014J B b e e Ut LT PR
E. Churazov'~, R. Sunyaev'”, . Isern”, J. Knodlseder®®, P. Jean™®, F. Lebrun®, N. Chugai’, S. Grebenev', E. Bravo®, §. Sazonov"" o - ¢ ! [ . . T4] 4
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— observation of *°Co gamma
rays indicates the presence of
56Nl..° Ni - SGCO — 56Fe

— °°Ni can be a “thermometer”

which gives detail of supernova
explosion mechanism

— *°Ni is also a “waiting point”
nucleus in the rp-process: a
bottleneck in element synthesis

Beam intensities sufficient for
indirect studies are expected!

Map of the *°Co gamma rays around SN2014J:
“The line fluxes suggest that about 0.6+0.1 solar
masses of radioactive **Ni were synthesized
during the explosion.”
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°°Ni, Another Astrophysics Observable
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Letter of Intent: The Next Generation of JENSA-Driven Measurements

K.A. Chipps.!? 5. Ahn.* D.W. Bardayan.! J.C.. Blackmon.® J. Browne? K.Y. Chae.® .
Cizewski,* U. Greife.® U. Hager.® K.L. Jones.? A. Kontos.” R.L. Kozub.” L. Linhardt.” M.
Matos.'? Z. Meisel,® F. Montes.” P.D. O'Malley.* S.D. Pain.! S.T. Pittman,” H. Schatz®
K.T. Schmitt,'" M.S. Smith,! P. Thompson,? C. Wrede,* and the JENSA Collaboration

I[. INTRODUCTION

The Jet Experiments in Nuclear Structure and Astrophysic s (JENSA) C ollaboration gas jet target is

ready for its first experimental campaign in the ReA3 hall. The acwaiis or the JENSA gas jet target may

be found elsewhere [1-5|. Commissioning tests have indicated that JENSA can reliably provide areal
densities up to ~ 1 x 10" atoms/cm?* helimm [5]. The anticipated densities for hydrogen, deuterinm, and
*He are similar |4|. For each of these gases, the use of a dense, localized, and pure gas jet target affords
tremendous advantages over traditional targets |5].

This Lett-_ .0 I_*nt describes » ... -nts of the following reactions: *%Si(a.p), *"S{a.p).
WP(*He.d °°Ni(*He.d).® Ni(a.p).: nd ®Ni(d.p). 7 ae Collaboration therefore requests that development

of these beams pe prioritized by the faciiy.
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Combmmg the powerful capablhtles of the JENSA gas
jet target (of which I am technical lead and PI),
_exotic beams of astrophy51ca1 nuclei from FRIB

~and the latest nuclear reaction theory,
we can probe more deeply and thoroughly
~*  into the stars |

% i than was prevmusly p0551b1e

f' s
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