FROM SPINS TO STARS:

Informing Astrophysical Scenarios through Indirect Measurements on Radioactive Nuclei

Kelly Chipps – Oak Ridge National Laboratory

Overview

Introduction to Nuclear Astrophysics: From the very small to the very large (32 orders of magnitude in dimension, 60 in energy): how quantum subtleties alter astronomical events, and the **origin** of the **elements** II) Connecting Nuclei to the Stars: Studying stars in the laboratory, with some nuclear reaction examples **III) Improving** our Understanding of Nucleosynthesis: Better science with better targetry

"We are made of star stuff." - Carl Sagan

Nucleosynthesis History: the Origin of the Elements

The Big Questions:

What is the origin of the elements in the cosmos? What are the nuclear reactions that drive stars and stellar explosions?

Welcome to Your Universe

Welcome to Your Universe

Sirius is the brightest star in the night sky

in 1844, the German astronomer Friedrich Bessel deduced that Sirius is actually a binary system

the small, binary companion, Sirius B (the "pup" star), was first observed in 1862 by American astronomer Alvin Clark

in 1915, observation led to the discovery that Sirius B was a white dwarf – much hotter and denser than its larger companion

Hubble image

Sirius B

What's so special about a white dwarf?

- white dwarf stars are the very hot and very dense remnants of dead main-sequence stars (the burnedout cores, rich in carbon, oxygen, and neon, and held in shape only by electron degeneracy pressure)
- when they're close to another star, their large gravitational pull can cause material to fall onto the dwarf's surface ("accrete")

What's so special about a white dwarf?

 that accreting material gets hot and dense, too, and then *flash!* a **runaway thermonuclear explosion** on the white dwarf surface – a **nova**

From Sirius, to Mira... to the Universe

About **50% of all stars** are in binary systems! Novae aren't rare (~40/yr) -Sirius B won't become one (the companions are too distant), but the **Mira** binary system is in the process right now!

x-ray image of accretion! \rightarrow

Explosive Astrophysical Environments

- other explosive events
 - novae
 - x-ray bursts
 - supernovae
- reactions proceed faster than competing decay
 - final isotopic abundances determined by network of reactions on short-lived, highly unstable nuclei
- these environments are the source of much of the heavy elements in the universe

...and they're the subject of lots of interdisciplinary study!

Thomas Becker / www.zumnordlicht.com / WFS-Berlin

vidocs/switt/sno/swift_sns.html

M100 - SN 2006X - SN 1979C

areat - NASA/GSEC/Switt Investor et al.

Astrophysical Nuclear Reactions

→ Maxwell-Boltzmann distribution
 probability of a particle having a given
 energy for environmental temperature
 → Barrier penetrability

quantum likelihood of particles getting close enough to react at a given energy

→ Convolution = "Gamow peak"

127

1.83

10.84+4+4+

nuclear levels falling within this energy range will contribute strongly to the stellar reaction rate

Astrophysical Nuclear Reactions

- → Maxwell-Boltzmann distribution
 probability of a particle having a given
 energy for environmental temperature
 → Barrier penetrability
 - quantum likelihood of particles getting close enough to react at a given energy
- → Convolution = "Gamow peak"

nuclear levels falling within this energy range will contribute strongly to the stellar reaction rate

To quantify the contribution from an astrophysical nuclear reaction, we need to measure either: the **rate** due to each of the levels in the Gamow peak directly, or the **nuclear properties** of these same levels (energies, spins, decay branches, spectroscopic factors) from which the rate can be indirectly calculated

Bringing the Stars into the Lab

- Instead of both particles moving, we hold one steady (the target) and accelerate the other into it (the beam) it's the same reaction in the center of mass frame then we measure one or more of the reaction products
- To measure the astrophysical rate directly, we need to accelerate the particles to the same energy that they have in the star
 - not so easy, though: very specific (low) beam energy, and the rates are actually very small (one event in a billion or less)
 - the lower the energy (getting closer to the Gamow peak), the lower the reaction rate
- When measuring the nuclear properties (indirect), you can pick reactions which are more favorable
 - beam energy is not so critical, and rates can be higher (one in a hundred thousand, one in a million...)
 - use a reaction which more easily populates the same nuclear levels

(but there's still a lot we don't know)

How do we measure these nuclear reaction rates?

→ Directly, when possible
 → Indirectly, most of the time
 → New techniques, new facilities, new equipment...

How about an example?

1) An excess of ²⁶Mg is found in the Allende meteorite, indicating the presence of ²⁶Al decay...

1) An excess of ²⁶Mg is found in the Allende meteorite, indicating the presence of ²⁶Al decay

2) Several space-based telescopes (HEAO, COMPTEL, INTEGRAL...) observe the characteristic 1.809 MeV gamma-ray line of radioactive ²⁶Al...

(expensive) instruments

1) An excess of ²⁶Mg is found in the Allende meteorite, indicating the presence of ²⁶Al decay

2) Several space-based telescopes (HEAO, COMPTEL, INTEGRAL...) observe the characteristic 1.809 MeV gamma-ray line of radioactive ²⁶Al

3) COMPTEL maps the 1.809 MeV gamma across the Milky Way galaxy...

0.00 0.16 0.33 0.49 0.65 0.82 0.98 1.14 1.31 1.47 1.63 1.80 1.96 2.12 2.29 2.45 2.61

1) An excess of ²⁶Mg is found in the Allende meteorite, indicating the presence of ²⁶Al decay

2) Several space-based telescopes (HEAO, COMPTEL, INTEGRAL...) observe the characteristic 1.809 MeV gamma-ray line of radioactive ²⁶Al

3) COMPTEL maps the 1.809 MeV gamma across the Milky Way galaxy

4) INTEGRAL shows that the sources are near massive stars, and that the ²⁶Al co-rotates with the galactic plane...

5) The direct observation of ²⁶Al decay is particularly important – and useful – because of the properties of this radioactive isotope: • its lifetime (~700,000 years) is long enough to outlast the length of an astrophysical explosion, but much shorter than the age of typical stars or the galaxy (so it's recent) • it can be tracked as it moves through the interstellar medium • since the flux is reasonably constant, it must be actively produced in the universe in order for us to observe it!

So how is it being produced?

²⁶Al in the laboratory

²⁶Al is particularly interesting because it provides a direct link between the **astrophysics** environment and **nuclear physics** we can study in the laboratory

Many reaction sequences affect the final ²⁶Al galactic abundance... Let's take a look at the ²⁶Al(p,γ)²⁷Si reaction, which destroys ²⁶Al and thus depletes the amount we could observe astronomically

note: ${}^{26}Al(p,\gamma){}^{27}Si$ means ${}^{26}Al+p \rightarrow \gamma$ -ray + ${}^{27}Si$

²⁶Al in the laboratory: ${}^{26}Al(p,\gamma){}^{27}Si$

Direct measurement

- **Direct** measurement **great**, but very **limited**
- **Indirect** measurements **powerful**, informative tools
- Ongoing questions it's actually very complicated!

- other destruction reactions?
- creation reactions?
- competing reactions?
- higher energy resonances?
- decay modes?
- lifetimes?
- astrophysical environment?

...our knowledge of ²⁶Al in the universe is still very limited!

• Other **isotopes** of interest to astrophysics but which are even more difficult to study?

How do we proceed?

Pushing the Boundaries of Nuclear Astrophysics

→ New techniques

→ New facilities

→ New equipment

New Detector Systems

ORRUBA, SuperORRUBA, HAGRiD, VANDLE, GODDESS, SECAR...

Lots of **time, effort, and money** invested
Several prestigious DOE Early Career **awards**

New Facilities

~\$900*M*, *completion* 2022

FACILITY FOR RARE ISOTOPE BEAMS

Reaccelerated beams (*ReA3*) Beam Area Reaccelera Gas Stopping Fast Beam Area Space for future expansion of the science program Reaccelerator Fragment Separator SRF High Bay 200 feet Production Target 50 meters Beam Delivery System Systems Folding Segment 2 Linac Segment 3 inac Segment Linac Segment 2 Folding Segment 1

Layout of the accelerator and experimental systems and the experimental areas of the Facility for Rare Isotope Beams. The Facility for Rare Isotope Beams, **FRIB**:

→ will provide intense
 beams of short-lived, very
 exotic nuclei such as those
 found in exploding stars

→ will be the **focus** of the low energy NP community in the US, allowing us to **push the boundaries** of nuclear physics → provides multiple **experimental areas** for different types of studies

A target is needed which is dense, highly localized, and pure

- dense: ~10¹⁹ nuclei/cm² depending on the nuclear reaction rate to be measured (10¹⁸⁻¹⁹ ~ solid)
- **localized**: target size ~ beam spot size, and thin to provide good energy/angle resolution
- **pure**: scattered contaminants contribute to background, which can't be tolerated in low-stats measurements

"Million-Dollar Beams and Ten-Cent Targets"

So what do we actually use for **targets**? ...Development here has been largely **ignored**!

- → commonly using thin metal and plastic foils, implanted targets, small gas cells, which are **full of contaminants** and **easily degrade**
- → these types of targets won't work for everything... we're not **leveraging** the **major developments** being made in **other aspects** of nuclear astro

A Solution? Gas Jet Targets

Create a jet of light gas (helium or hydrogen) – with the correct engineering, a target that is

dense, pure, homogeneous, and localized

can be produced... state-of-the-art targetry!

We have designed, built and tested the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target, a ~\$2M, 3 year, multi-institutional project

Commissioning done at ORNL, system now on dedicated beamline (one of only three) at ReA3!

See K.A. Chipps et al, Nucl. Instr. & Methods A 763 (2014) 553

Basic Components

pumping stages (turbos) with restrictive apertures provide vacuum

turbo on central chamber backed by a roots blower

series of large roots blowers for inner and outer receiver move large volumes of gas

roots blower stages backed by multistage roots (msr) pumps to handle gas flow

custom compressor to return gas to high reservoir pressure

scroll pump for evacuating system during startup/shutdown

pumping stages (turbos) with restrictive apertures provide vacuum

turbo on central chamber backed by a roots blower

series of large roots blowers for inner and outer receiver move large volumes of gas

roots blower stages backed by multistage roots (msr) pumps to handle gas flow

custom compressor to return gas to high reservoir pressure

scroll pump for evacuating system during startup/shutdown

pumping stages (turbos) with restrictive apertures provide vacuum

turbo on central chamber backed by a roots blower

series of large roots blowers for inner and outer receiver move large volumes of gas

roots blower stages backed by multistage roots (msr) pumps to handle gas flow

custom compressor to return gas to high reservoir pressure

scroll pump for evacuating system during startup/shutdown

pumping stages (turbos) with restrictive apertures provide vacuum

turbo on central chamber backed by a roots blower

series of large roots blowers for inner and outer receiver move large volumes of gas

roots blower stages backed by multistage roots (msr) pumps to handle gas flow

custom compressor to return gas to high reservoir pressure

scroll pump for evacuating system during startup/shutdown

pumping stages (turbos) with restrictive apertures provide vacuum

turbo on central chamber backed by a roots blower

series of large roots blowers for inner and outer receiver move large volumes of gas

roots blower stages backed by multistage roots (msr) pumps to handle gas flow

custom compressor to return gas to high reservoir pressure

scroll pump for evacuating system during startup/shutdown

pumping stages (turbos) with restrictive apertures provide vacuum

turbo on central chamber backed by a roots blower

series of large roots blowers for inner and outer receiver move large volumes of gas

roots blower stages backed by multistage roots (msr) pumps to handle gas flow

custom compressor to return gas to high reservoir pressure

scroll pump for evacuating system during startup/shutdown

ISOMETRIC

...and most important, the Jet

- utilizes two different laval (convergentdivergent) nozzles (0.8mm and 1.1mm "neck") - like the inside of a jet engine!
- receivers set below the nozzle catch the expanding gas (various sizes to match jet)
- 14mm "free jet" region (adjustable)

Test Setup

Confirming our density achievement

energy loss of alpha particles through the gas is linearly related to the **gas areal density** (number of target particles per area "slice")

each datum is one pixel of the detector \rightarrow we can "map" the **density distribution of the jet**

¹²⁰Sn+^{nat}N₂ Elastic Scattering at 40MeV

So... what next?

The best way to demonstrate the full capability of the JENSA gas jet target is to give another astrophysics example

Another Astrophysical Observable? ¹⁸F

Figures adapted from Hernanz et al., New Astron. Rev. 46, 559 (2002); astro-ph/0109093.

¹⁸F in novae: ¹⁸F(p,α)¹⁵O

- Direct measurements have been made at some energies, but the rate is so small that we weren't able to determine everything (recall we need high beam intensity and long experiments...)
- The biggest gap in our knowledge of this explosive stellar reaction rate is the behavior at energies below the reaction threshold particularly, the parameters of a single nuclear level!

Indirectly: ²⁰Ne(p,d)¹⁹Ne

- Problem is interference the nuclear spin of the level in question manifests in the quantum wavefunction of that state, and this wave can interfere constructively or destructively with other resonances
- All we need to know is the spin of that state, which we can determine by studying the angular momentum transferred to/from that level this is a perfect opportunity for an indirect study!
- With a proton beam and a ²⁰Ne target, use the (p,d) transfer reaction to populate levels in ¹⁹Ne the same levels in this compound nucleus as during ¹⁸F(p,α)¹⁵O:

$${}^{8}\mathbf{F} + \mathbf{p} \rightarrow {}^{19}\mathbf{Ne}^{*} \rightarrow {}^{15}\mathbf{O} + \boldsymbol{\alpha}$$

On to the Future

- There are a multitude of opportunities for **important**, **astrophysics**-motivated, **indirect measurements** of nuclear properties just like the examples I've shown!
- Many indirect (and also some direct) measurements are possible, using JENSA gas jets of ¹H, ²H (D), ³He, and ⁴He and someone needs to lead the effort
- Many beams from ReA3/FRIB are those of interest to astrophysics, most of which have not been available before now (others are available at much higher intensities than ever before)
- Improvements to reaction formalism/theory mean we can be **more confident** of our derived reaction rates

The Observables: ¹⁸F and ²⁶Al

The Observables: ¹⁸F and ²⁶Al

The Observables: ¹⁸F and ²⁶Al

One Intriguing New Possibility: ⁵⁶Ni, Another Astrophysics Observable

doi:10.1038/nature13672

Cobalt-56 γ -ray emission lines from the type Ia supernova 2014J

E. Churazov^{1,2}, R. Sunyaev^{1,2}, J. Isern³, J. Knödlseder^{4,5}, P. Jean^{4,5}, F. Lebrun⁶, N. Chugai⁷, S. Grebenev¹, E. Bravo⁸, S. Sazonov^{1,9} & M. Renaud¹⁰

→ observation of ⁵⁶Co gamma rays indicates the **presence of** ⁵⁶Ni: ⁵⁶Ni → ⁵⁶Co → ⁵⁶Fe → ⁵⁶Ni can be a "thermometer" which gives detail of **supernova explosion mechanism** → ⁵⁶Ni is also a "waiting point"

nucleus in the rp-process: a **bottleneck in element synthesis**

Beam intensities sufficient for indirect studies are expected!

Map of the ⁵⁶Co gamma rays around SN2014J: **"The line fluxes suggest that about 0.6±0.1 solar masses of radioactive** ⁵⁶Ni were synthesized during the explosion."

One Intriguing New Possibility: ⁵⁶Ni, Another Astrophysics Observable LETTER IKI, MPA and INTEGRAL te SN-2014J

doi:10.1038/nature13672

10-5

2 × 10

-2 keV-

Cobalt-5 supernov

E. Churazov^{1,2}, R. Su & M. Renaud¹⁰

 $\rightarrow obse$ rays in 56Ni: 56 \rightarrow ⁵⁶Ni which a explosi \rightarrow ⁵⁶Ni nucleus bottlen

Beam i

indirec

Letter of Intent: The Next Generation of JENSA-Driven Measurements

K.A. Chipps,^{1,2} S. Ahn,³ D.W. Bardayan,⁴ J.C. Blackmon,⁵ J. Browne,³ K.Y. Chae,⁶ J. Cizewski, U. Greife,⁸ U. Hager,⁸ K.L. Jones,² A. Kontos,³ R.L. Kozub,⁹ L. Linhardt,⁵ M. Matos,¹⁰ Z. Meisel,³ F. Montes,³ P.D. O'Mallev,⁴ S.D. Pain,¹ S.T. Pittman,⁵ H. Schatz,³ K.T. Schmitt,¹¹ M.S. Smith,¹ P. Thompson,² C. Wrede,³ and the JENSA Collaboration

INTRODUCTION Τ.

The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration gas jet target is ready for its first experimental campaign in the ReA3 hall. The details of the JENSA gas jet target may be found elsewhere [1-5]. Commissioning tests have indicated that JENSA can reliably provide areal densities up to $\sim 1 \times 10^{19}$ atoms/cm² helium [5]. The anticipated densities for hydrogen, deuterium, and ³He are similar [4]. For each of these gases, the use of a dense, localized, and pure gas jet target affords tremendous advantages over traditional targets [5].

This Letter of Letent describes measurements of the following reactions: ${}^{26}Si(\alpha,p)$, ${}^{30}S(\alpha,p)$, $^{30}P(^{3}He,d, 5^{6}Ni(^{3}He,d), 5^{9}Ni(\alpha,p), and 5^{6}Ni(d,p)$. The Collaboration therefore requests that development of these beams be prioritized by the facility.

14J: solar ized

The Take-Home Message

Combining the powerful capabilities of the JENSA gas jet target (of which I am technical lead and PI), exotic beams of astrophysical nuclei from FRIB, and the latest nuclear reaction theory, we can probe more deeply and thoroughly into the stars than was previously possible

The ORNL Physics Division (esp. David Dean, Michael Smith, Steven Pain) The JENSA Collaboration (esp. Dan Bardayan, Antonios Kontos, Allison Sachs, Paul Thompson) The RIBENS Collaboration (esp. Patrick O'Malley)

Extras

From the Stars to the Lab

release of energy

From the Stars to the Lab

From the Stars to the Lab

proton neutron gamma

