Finding the Most efficient Way to Stop Percolation through the use of a Firewall in the Forest Fire Model

Brian A. Kinder

Faculty Sponsor: Robert Ragan, Department of Physics

ABSTRACT

Through the use of computer simulation, the optimal way to stop the spread of forest fires with a firewall was examined. Forest fires were modeled with a 2-D percolation lattice near the percolation threshold ($p_c = .5962$). The effectiveness of the firewall as a function of its half-width (*hw*) and distance (*d*) from the starting point of a fire was determined. Our results suggested that the effectiveness of the firewall could be characterized by the function $tan(\theta)=hw/d$. For a site occupation probability of 0.62 we found that the optimal angle (θ) to be $\approx 60^{\circ}$. At this value of θ , the firewall is at its maximum distance from the fire and has a blocking effectiveness of 50%.

INTRODUCTION

In the on going battle to stop the spread of wildfires, one of the common methods of confinement is through the use of a firewall. A firewall is a line cut perpendicular to the direction of propagation of the fire where all of the fuel (e.g. trees, brush, grass, etc.) has been removed.

To obtain a better understanding of the effectiveness of a firewall, a 2-D forest has been simulated with a percolation lattice near the percolation threshold ($p_c = .5962$). A forest of dimension 320 x 200 pixels² was filled with a site probability of 0.62, where each pixel represents a tree. A firewall was then cut into the forest, and the forest was burned from a point source in the middle of the top row. The fire was allowed to spread to the nearest neighbor (no diagonal burning) only if a tree occupied that site. The fire was observed to see if it reached the bottom row of trees.

Simulations were run using two half widths of the firewall, hw = 25, and hw = 50. A hundred iterations were used at each distance d from the origin of the fire. The data was plotted and compared to the model.

Shown below is single forest filled with p = 0.62. Notice that without a firewall, the fire spreads to the bottom. In the second frame, you see that with the addition of the firewall, the fire is extinguished.

Percolating fire, no fire wall, p = 0.62

Same fire as above, with firewall

Data: The model that was used to describe the dimensions of the system is shown below.

1 1			w = 25, hw =50)	and by varying d from 10
	hw =		hw = 50	
	d	Normalized number of	d	Normalized number of
	100	percolating fires	100	percolating fires
	100	0.782608696	100	1.5625
	95	0.782608696	95	1.484375
	90	0.869565217	90	1.40625
	85	0.869565217	85	1.328125
	80	0.898550725	80	1.25
	75	0.913043478	75	1.171875
	70	1	70	1.09375
	65	0.942028986	65	1.015625
	60	0.956521739	60	0.9375
	55	0.927536232	55	0.859375
	50	0.826086957	50	0.78125
	49	0.811594203	49	0.765625
	48	0.84057971	48	0.75
	47	0.898550725	47	0.734375
	46	0.84057971	46	0.71875
	45	0.739130435	45	0.703125
	44	0.884057971	44	0.6875
	43	0.884057971	43	0.671875
	42	0.956521739	42	0.65625
	41	0.913043478	41	0.640625
	40	0.956521739	40	0.625
	39	0.68115942	39	0.609375
	38	0.797101449	38	0.59375
	37	0.753623188	37	0.578125
	36	0.695652174	36	0.5625
	35	0.811594203	35	0.546875
	34	0.768115942	34	0.53125
	33	0.855072464	33	0.515625
	32	0.782608696	32	0.5
	31	0.913043478	31	0.484375
	30	0.753623188	30	0.46875
	29	0.84057971	29	0.453125
	29	0.724637681	29	0.4375
	20	0.768115942	20 27	0.421875
	26	0.695652174	26	0.40625
	25	0.710144928	20	0.390625
	24	0.623188406	23	0.375
	23	0.666666666	23	0.359375
	$\frac{23}{22}$	0.623188406	23	0.34375
	21	0.565217391	22	0.328125
	20	0.695652174	20	0.3125
	19	0.536231884	19	0.296875
	19	0.52173913	19	0.28125
	17	0.463768116	17	.265625
	16	0.579710145	16	0.25
	15	0.565217391	15	0.23
	13 14	0.507246377	13	0.234373 0.21875
	14	0.376811594	14	0.203125
	13	0.289855072	13	
	12	0.289835072	12	$0.1875 \\ 0.171875$
	11	0.246376812	11 10	
	5	0.057971014	10 5	$0.15625 \\ 0.078125$
	5	0.03/9/1014	5	0.078123

Data was taken at two different hw (hw = 25, hw =50) and by varying d from 100 to 0.

This data was then plotted and measurement were taken to find where the firewall was effective 50% of the time.

From this graph the hw/d ratio where the firewall was 50% effective was determined to be 1.9, and $\tan^{-1}(1.9)$ is approximately 60°.

RESULTS

From the above graph we determined that both of the firewalls stopped the fire 50% of the time when hw/d = 1.9. This ratio corresponds to an angle of $\approx 60^{\circ}$. However, further work is need to test is hw/d is a good scaling parameter for characterizing the effectiveness of a firewall.

Moreover, this research is a stem that could be used to further study other more in depth problems dealing with the effectiveness of a firewall.

ACKNOWLEDGEMENTS

I would like to thank Dr. Robert Ragan, Dr. Xiayoun Ma and the Dynamics Research Group, and The UW-L Undergraduate Research Grant Committee for funding.

REFERENCES

Dietrich Stauffer and Amnon Aharony, *Introduction to Percolation Theory* ed. 2, Taylor and Francis, 1994