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ABSTRACT
Wave Equations are partial differential equations (PDEs) which are used to model
nearly all finite speed wave transmissions, such as sound and radar. The PDEs
describe how wave information propagates in time by modeling displacement from
equilibrium. Ideally, the exact position of the wave is known at some point in time,
and the position of the wave at future times needs to be determined. In practice,
however, the exact position may only be known at a finite number of points in
space. Therefore, numerical approximations are needed so that the position of the
wave at a future time can be predicted. This research focuses on the numerical
methods used for these approximations.

THE WAVE EQUATION
One example of a hyperbolic partial differential equation (PDE) is the acoustic wave

equation. This PDE models a three dimensional wave which may travel in any direction. In
[4], it is shown that the larger acoustic problem can be approximated by a collection of one-
dimensional, one-way wave equations which have the form

ut+cux=0       u(x,0)=f(x).     (1)
In this equation, c is the wave speed and u(x,t) measures the displacement of the wave from
equilibrium at each point in space x and at each time t. This equation describes how the wave
changes from one point in time to the next. Initially (t=0), the exact position of the wave is
given by f(x), and the position of the wave at future times (t>0) must be determined. One
added complication is that, in practice, only a finite amount of information is known initially
(the value of u at a limited number of points).

METHODS
To approximate the value of the solution u at points in time after the initial time, the

Taylor Series expansion [2,3,5] is used,

u(x,t+∆t)=u(x,t)+∆t ut(x,t)+(∆t)2

2! 
utt(x,t)+. . . (2)

This implies that the value of a function at a later point in time may be determined, pro-
vided the derivative values are known at time t. Since the initial function is not known for all
values, only a finite number of data points in space, the derivatives will need to be approxi-
mated.

The initial data provides information in space, but at only a single time (t=0), making time
derivative approximations difficult. From the PDE, (1), we know ut =-ux, (assuming c=1,
which is not necessary, and is shown here to simplify the derivation) from which follows that
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utt=uxx. Substituting this into the Taylor Series, we get the following expansion 

u(x,t+∆t)=u(x,t)-∆t ux(x,t)+(∆t)2

2! 
uxx(x,t)-. . . (3)

This new equation provides a method of determining the position of the wave at later
points in time in terms of space derivatives. Therefore, one of the primary focuses of the
research involves approximating the space derivative ux and uxx. Finite differences [2,3] can be
used to approximate derivatives using a finite number of data points. When using four points
in space to approximate the ux, there are four finite difference approximations that could be
used to approximate ux, each using different data sets (stencils). The four stencils that could
be chosen are relative to the point that is to be approximated, say for example ux(x,t+∆t) for a
given value of x (denoted by • in the following description). The first possible stencil con-
tains the point at x, and the three points to the left (°°° •). The next stencil contains the point
at x, two points to the left, and one to the right (°° • °). The third stencil contains one point to
the left, and two to the right of x (° • °°). The fourth stencil contains the point at x and three
points to the right (• °°°). For one-way waves that travel to the the right, this last stencil is not
useful due to upwinding. Upwinding [1] requires that one always select a stencil at x that
contains the point next to it in the direction in which the wave is coming. The method in
which one selects from among the three remaining stencils may be used to determine deriva-
tive approximations, which is another primary interest in this research. 

ENO Method
One method (developed in the mid 1990’s, see [4]) is referred to as the Essentially Non-

Oscillatory (ENO) method. Each derivative will be approximated using one of the stencils
presented above. The ENO method will choose the stencil by building it up, starting with the
point at x, (•). ENO will always choose to add the point next to it in the direction in which
the wave is coming due to upwinding (with c>0, the stencil is now °•). ENO then selects
from two sets of three points. One set consists of the first two points plus the point to the left
(°° •), and the other set contains the first two points plus the point to the right (° • °). If an
interpolating parabola is generated for each of the two data sets, then ENO selects the set that
forms the flatter (smaller in magnitude second derivative) parabola. At this point, only one
more point needs be added to form the completed stencil. ENO adds either a point to the left
of the selected three, or a point to the right, by selecting the data set that is interpolated by
the cubic polynomial which has the smallest, in magnitude, third derivative. Note that two
steps are needed to find four points to use.

Linear Deviation Method
As a result of this research, an alternative to the ENO method was found. This new

method, the linear deviation method, selects the data with the least linear deviation and only
uses one step to find four points to use (choosing one of the three upwind stencils outlined
above). Once the upwind point is determined, this new method then uses the two points (° •
for c>0) to form a line. The two points to add are chosen by selecting the pair that has the
least linear deviation (in the  l1 sense) from the line. In other words, the set of two points that
are closest to the line. The amount of deviation from the line and each point is calculated by
subtracting the value of the line at that point and the value of the data at that point, and then
applying the absolute value. Next, the deviations are summed for the three sets of two points.
The set with the least amount of summed linear deviations is chosen.
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The Linear Deviations method can also jump from two to five points using this same con-
cept.When jumping from two points to four, this method is referred to as the 2-pt method,
since 2 additional points are added. It follows that when jumping from two points to five, the
method is referred to as the 3-pt method, since 3 additional points are added. While the 3-pt
methods lead to similar results, only the 2-pt method will is discussed in detail.

Calculating the Space Derivative
With either method (ENO or the 2-pt Linear Deviation) the second derivative of u with

respect to x (uxx) can be approximate in two different ways. With each method (ENO or the 2-
pt), one could first find ux and then again apply the same method to the ux data to arrive at an
approximation to uxx. A second approach would be to modify the routines so that the second
derivative is approximated directly using linear algebra [4]. The first approach requires nearly
twice as many calculations, but attempts to adapt to the changes in the derivative as well as
the changes in the function (data). Acceptable increases in computational complexity are
those increases which lead to a better approximation. On certain waves, calculating the first
derivative twice to approximate uxx leads to a better approximation, while on other waves, cal-
culating the second derivative directly leads to a better approximation. Thus, examples of
both types of waves are presented. Each wave will be approximated using ENO and 2-pt.
ENOa and 2-pta calculate the first derivative twice to get the second derivative. ENOb and 2-
ptb use linear algebra to calculate the second derivative directly.

It should be noted that it was unexpected that calculating the second derivative directly
using linear algebra would give better approximations on certain waves. The stencils are cho-
sen for ENO and Linear Deviation in a non-linear fashion. Since it is not linear, calculating
the second derivative directly does not give the same results as calculating the first derivative
twice. Even though it may seem that taking the derivative twice would better adapt to the
data, on some waves this was shown to not be the case.

Introduction to the Analysis
To determine which method gives better results, the various methods were tested against a

set of problems for which the exact solution is known. The approximation and the exact solu-
tion were compared using the l1, l2 and the l∞ norms [2]. The  l1 norm sums the absolute
value of the differences between the true solution and the approximation at each of the dis-
crete spatial points. The  l2 norm calculates the sum of the squared differences between the
true solution and the approximation (least squares), and the l∞ norm finds the maximum dif-
ference between the true solution and the approximation (mini-max). Thus, error norms that
are closer to zero imply better approximations.

The primary determining factors for method comparison are the error norms and the
amount of work (number of calculations needed) to calculate ux anduxx (all other aspects of
the algorithms for each method were the same). 

ANALYSIS
Eight data sets were used to test the methods for which the exact wave was known for all

steps in time. Each data set consisted of discrete data. In the calculations, a grid spacing of
∆x= 1/101 and ∆t =2∆x/5 were used. For each data problem, periodic boundary conditions were
assumed and the approximation was compared to the initial data after two revolutions (with
wave speed c=1, the exact solution would exactly match the initial data). Using the true solu-
tion, and the approximation arrived at by using a certain method moved from time step to
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time step, comparisons can be made using the norms to see how well the solution is approxi-
mated. For reference, the linear deviation method is compared to ENO as the standard
method.

As mentioned before, two types of waves will be examined. The first is the “ramp’’ data
set shown in Figure 1.This is a very simple data set that consists of four lines connected
together. Where the lines are connected, the function is continuous, but not differentiable.
This affects the convergence of the Taylor series expansion of the wave. Also, periodic
boundary conditions are set so that when the wave reaches the right side of the box, it will
wrap back into the left side of the box.

Figure1 :The ramp function with ∆∆x= 1/101 and ∆∆t =2∆∆x/5 .

Figure 2:ENOb and 2-ptb after 505 steps in time (2 revolutions) with ∆∆x= 1/101 and ∆∆t =2∆∆x/5 .

Figure 2 contains a comparison of the true solution (the solid line), ENOb (the dotted
dashed line) and 2-ptb (the dashed line). It is hard to visually distinguish between the two
methods and the true solutions except at the corners where the original function is not differ-
entiable. Since a visual comparison is difficult, the norms are presented in the following
table.

Norm ENOa ENOb 2-pta 2-ptb

l1 1.8668 1.527 1.111 1.2269
l2 0.3398 0.2879 0.2642 0.2502

l∞ 0.1169 0.1008 0.0940 0.0910

From the above norms, it can be seen that the 2-ptb method outperforms the other meth-
ods. This can also be seen better visually if the errors of the methods are plotted. To find the
error, the approximation is subtracted from the true solution and the resulting function is
plotted. Therefore, the closer the approximation, the closer to zero the curve in the graph will
be. 
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Figure 3:Error inENOa and 2-ptb after 505 steps in time (2 revolutions) with ∆∆x= 1/101 and ∆∆t =2∆∆x/5.

Figure 3 contains the error plots for the methods that approximate the second derivative
with respect to space by calculating the first derivative twice (the subscript a methods).

The error for ENOa is the dashed line and the error for 2-pta is the solid line. From this
graph, it can be seen that the 2-pta method yields a better approximation then ENOa, a fact
observed in the norm table

Figure 4 contains the error plots for the methods that approximate the second derivative
with respect to space by using linear algebra to calculate it directly.

The error for ENOb is the dashed line and the error for 2-ptb is the solid line. From the
graph, it can be seen that the 2-ptb method has a closer approximation then ENOb. This is also
shown in the norms.

It should be noted that the 2-ptb method outperforms the other methods. This is desirable
because compared to the ENO methods, linear deviation methods take less calculations since
they “jump’’ from two points to four in just one step rather than two. This is also good
because the 2-ptb method takes fewer calculations then 2-pta due to calculating the second
derivative directly in one step instead of two. So, all in all, the 2-ptb method takes the least

Figure 4: Error inENOb and 2-ptb after 505 steps in time (2 revolutions) with ∆∆x= 1/101 and ∆∆t =2∆∆x/5.

Figure 5: Step function with ∆∆x= 1/101 and ∆∆t =2∆∆x/5.
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computations of the four methods and yields the best error norms.
As mentioned earlier, some waves are approximated better using approximations that cal-

culate the second spatial derivative by taking the first derivative twice. One such wave is the
step function shown in Figure 5. 

The step function consists of 3 lines, which are not connected (there are vertical jumps in

the data). This function is neither continuous nor differentiable at the points where the jumps
occur. This too affects the convergence of the Taylor Series expansion of the wave. 

Figure 6 contains a comparison of the true solution (the solid line), ENOa (the dotted
dashed line) and 2-pta (the dashed line). With this graph, it can be seen which method does
better. The norms associated with the various approximations are contained in the following
table.

Figure 6: ENOaand 2-pta after 505 steps in time (2 revolutions) with ∆∆x= 1/101 and ∆∆t =2∆∆x/5.

Figure 7: Error in ENOb and 2-ptb after 505 steps in time (2 revolutions) with ∆∆x= 1/101 and ∆∆t =2∆∆x/5.

Figure 8: Error in ENOa and 2-pta after 505 steps in time (2 revolutions) with ∆∆x= 1/101 and ∆∆t =2∆∆x/5.
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Norm ENOa ENOb 2-pta 2-ptb

l1 5.9266 5.2826 4.7778 4.8951
l1 1.3114 1.2784 1.1953 1.2758
l∞ 0.4941 0.5458 0.4851 0.5703

Figure 7 contains the graphs of the errors involved with the methods that approximate the
second derivative with respect to space by using linear algebra to calculate it directly (the
subscript b methods).

The error for ENOb is the dashed line and the error for 2-ptb is the solid line. The norms
show that the 2-ptb method does better on the first two norms, but ENOb does better on the
infinity norm. Figure 8 contains the errors for the methods that approximate the second deriv-
ative with respect to space by calculating the first derivative twice.

The error for ENOa is the dashed line and the error for 2-pta is the solid line. From this
graph, it can be seen that the 2-pta method has a closer approximation than ENOa. 

Recall that since 2-pta jumps from using two points to four in only one step, it requires
fewer calculations then ENOa. Therefore, it can be said that 2-pta outperforms ENOa.

CONCLUSIONS
The various methods described in this paper were applied to a number of different wave

data sets. It was found that certain waves are better approximated using different methods. It
should be noted, however, that all waves were better approximated using the linear deviation
methods rather than the ENO methods. This is desirable since linear deviation methods are
less complex and require fewer computations. Even though the linear deviation methods do
not give highly significant gains in accuracy, it was possible to increase the accuracy (as
compared to ENO) with fewer computations.

Some preliminary research has been completed using the 3-pt method that “jumps’’ from
two points to five points by adding 3 additional points. By comparing the error norms pro-
duced, the linear deviation methods were again shown to outperform the ENO methods,
again with fewer computations. 
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