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ABSTRACT 

We  calculate  hydrodynamic  mode  longitudinal  and  transverse  spin  correlation  functions 
for polarized quantum one­dimensional lattices containing two, four, and eight spins 
using a Heisenberg nearest neighbor interaction. We also analyze the spectra of these 
systems. 

INTRODUCTION 

Recently,  Cowan  and Mullin[1] have  used a  moments  method to  study spin  transport  in  polarized 
paramagnetic (high temperature) quantum crystals. Their analytic calculations of the diffusion 
coefficients have been qualitatively confirmed with numerical calculations of correlation functions 
on  1­d  lattices  with  classical  Heisenberg  spin  dynamics  by  Tang  and  Waugh[2] and  Ragan  et  al.[3]. 
However, it is not clear whether the classical simulations are strictly comparable to the analytic 
quantum results. It is the goal of this paper to calculate the quantum correlation functions directly 
so that they can be compared to the classical results. Such calculations have been carried out for 
low temperature systems [4]. A severe limitation of the approach, however, is that the quantum 
calculation can only be carried out for small N systems. 

Consider a one­dimensional lattice containing N spins. We can write the state vectors as a 
product of single spin states: 

N

|ψn = 
� 

Sj
z , (1) 

j=1

where ψn is one of the 2N possible state vectors, and Sj
z equals ↑� or ↓�. We can also represent 

these state vectors in binary notation1, which is useful when generating the Hamiltonian and spin 
matrices. 

Now, the Hamiltonian contains the Heisenberg exchange interaction and the interaction with the 
magnetic field. 

H = Hex + ˆ ˆ ˆ Ŝj
zˆ ˆ Hb = −J 

� 
Sj · Sk + b 

� 

j,k j 

The solution to the Schrödinger equation is 

ψ(t) = ψ(0)e− ˆi (h̄ Hb )Hex + ˆ t 

We would like to simplify our calculations by transforming our solution to the Larmor frame. This 
will eliminate Ĥb from the solution, and the dynamics of the system will only depend on the exchange 
Hamiltonian. Our rotation operator is R̂(t)

i 
h̄ Ĥb t so we have, = e 

ψ�(t) = R̂(t)ψ(t) = e 
i 
h̄ Ĥb tψ(0)e− ˆi (h̄ Hb )Hex + ˆ t = ψ(0)e− i 

h̄ Ĥex t 

1See the Appendix for an explaination. 
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We must now determine the exchange Hamiltonian matrix, Ĥex = 
− J 

�
Ŝj · Ŝk. (From here on we will drop the subscript.) To construct the Hamiltonian, we will 

j,k 

rewrite the interaction in terms of the Pauli exchange operator2 . 

ˆ ˆSj · Sk = (2P̂jk − 1) 

ˆ J ˆ 1 
H = − 

2 

� 
Ŝj · Sk = −J 

�
(P̂jk − 

2
) 

j,k j,k 

The exchange operator, P̂jk simply exchanges the spins of the for the jth and kth spins. We can 
illustrate this on the previous example for ψ5 = P23 is acting on ψ5 , we have | � |↓↑↓↑�: if ˆ | �

P̂23|↓↑↓↑� = |↓↓↑↑� = |0011� = |ψ3� 

For the ground state, all spins are up. In addition, the ground state is a stationary state. In 
order to make the ground state have zero energy, we will add J/2 to each term in the Hamiltonian. 
We have 

Ĥ = −J 
�

(P̂jk − 1). (2) 
j,k 

Let’s see how the Hamiltonian acts on our previous example, ψ5 =| � |↓↑↓↑�. 

Ĥ ψ5 = −J (P̂12 + P̂23 + P̂34 + P̂41 − 4)| � |↓↑↓↑� = 
=−J (|↑↓↓↑� + |↓↓↑↑� + |↓↑↑↓� + |↑↑↓↓� − 4|↓↑↓↑�)

−J (|1001 + 0011 + 0110 + 1100 |0101 ) =− 4� | � | � | � �
−J (|ψ9 + ψ3 + ψ6 + ψ12 |ψ5 )− 4� | � | � | � �

We can now generate the Hamiltonian: 

N −1

Ĥjk = J [4δjk − δjα − 
� 

δjβ ], (3) 
l=1 

where 
α = j + (2N −1 − 1)[(j − 1) mod 2− (� 

2
j 
N

−
−
1 
1 
�) mod 2], 

and 
j − 1 

β = j + 2l−1[(� 
2l−1 

�) mod 2− (� j − 1 �) mod 2].
2l 

Once the Hamiltonian is determined, we need to find the eigenvalues, En to determine the 
propagator, 

Û (energy) = δjk e iEn t . (4)jk 

The eigenvalues are the energies of each of the state vectors when written in the energy basis. Hence, 
the propagator is written in the energy basis, whereas the state vectors in Eq. (1) are written in 
a different basis, which we will call the standard basis. We can transform the propagtor to the 
standard basis by constructing a transformation matrix with the normalized eigenvectors, en , of 
the Hamiltonian. The transformation matrix is 

| �

T̂ = [ e1�||e2�|... eN ]. (5) 

2For a detailed description of this procedure, see Feynman [5] 
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Transforming the propagator into the standard basis, we have 

ˆ U (energy) ˆU = T̂−1 ˆ T . (6) 

The next step is to determine the spin operator matrices, Ŝj
x , Ŝj

y, and Ŝz that act on the jth 
j 

spin of a particular state vector. These matrices can be determined by using the angular momentum 
commutation relationships. 

¯
Ŝ(

x
j)lm = 

h
δlγ , (7)

2
¯

Ŝy = i
h

γδlγ , (8)(j)lm 2
¯

Ŝz = 
h

γδlm (9)(j)lm 2
where 

l − 1 
γ = l − 2m−1(2� 

2m−1 
� mod 2− 1), 

To calculate the correlation function, we will need to construct the q­mode parallel and transverse 
spin operators. These are 

ŝ z 
q = 

� 
Ŝz 

j cos 
2πqj 
N 

, (10) 
j 

ŝ + 
q = 

�
(Ŝx 

j + i ̂Sy 
j )e
− 

2πiqj 
N . (11) 

j 

ŝ−q = 
� 

j 

(Ŝx 
j − i ̂Sy 

j )e
− 

2πiqj 
N . (12) 

It is also necessary to construct the density matrix, which determines the statistical weighting 
of each spin due to polarization. The density matrix is 

2� j − 1 
2k−1 

� mod 2− 1)
b z

l 
b √
3

S−(−1)|√
3

ρ̂jk = δjke (13)l l= δjke 

Here, Sl
z is written in binary notation, and the magnitude of b corresponds to the strength of the 

magnetic field. 
We define the parallel and transverse correlation functions, respectively, as[6] 

z z 

Gz (t) = 
�ŝq (t) ŝq (0)· � 

, (14) 
sz sz� q̂ (0) · q̂ (0)

+ s−ŝq (t) q̂ (0)
G+(t) = 

�
+ 

· � 
. (15) 

s−�ŝq (0) · q̂ (0)
By applying the propagator to Eq. (10) and (11), the q­mode spin operators are made time 

dependent. Since we are interested in the hydrodynamic mode, q = 1. 
z z ρ ˆ z ˆ z zρ ˆ z ˆs1]ŝ1(t) ŝ1(0)� 

= 
� ̂ U†ŝ1 Uŝ1 Tr[ˆU†ŝ1 U ̂

Gz (t) = 
�

z 

· 
z z z�

� 
= 

Tr[ρ̂ ŝ1 s
z ]�ŝ1(0) · ŝ1(0)� �ρ̂ ŝ1 ŝ1

z 
1̂

. (16) 

+ + ˆs−ŝ1 (t) 1̂ (0)� 
= 
� ̂ U†ŝ U ̂ 1 Tr[ˆU†ŝ+ U ̂ 1 

ˆs−]
G+(t) = 

�
+ 

· s− ρ ˆ
+
1 � 

= 
ρ ˆ 1 . (17)+ �ŝ1 (0) · 1̂ (0) �ρ̂ ŝ1 s

− Tr[ρ̂ ŝ1 s
−]1̂s− � 1̂ �

It is possible to observe the spectrum for a given lattice by taking the Fourier Transform of the 
correlation function: 

q (ω) = √1
2π 

� ∞ 

Gz iωtdt (18)Gz
q (t)e 

−∞ 
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CORRELATION FUNCTION OF THE QUANTUM DIMER AS AN ILLUSTRA-
TION 

For a two spin system, the state vectors in the standard basis are 

ψ0 = ψ1 = ψ2 = ψ3 =| � |↓↓�, | � |↓↑�, | � |↑↓�, | � |↑↑�. (19) 

We use Eq. (3) to calculate the Hamiltonian matrix (for simplicity, we will make the constant 
J = 1): 

Ĥ = 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ . 

0 0 0 0 
0 2 −2 0 

2 00 −2 
0 0 0 0 

By finding the eigenvalues and normalized eigenvectors, we can construct the transformation and 
the propagator matrices using Eqs. (4) and (5). 

⎛ 

⎜⎜⎝ 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 e−4it 

⎞ 

⎟⎟⎠ .U (energy)ˆ = 

T̂ = 

⎛ 

⎜⎜⎝ 

0 0 0 1 
1 10 √
2 

√
2 

0 
1 0 0 0 

1 1 00 − √
2 

√
2 

⎞ 

⎟⎟⎠ . 

The next step is to transform the propagator into the standard basis(Eq. (6)). We have 

ˆ U (energy) ˆU = T̂−1 ˆ T = 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

1 0 0 0 
1 1e−4it 1 

2 − 1 e−4it0 + 02 2 2
1 + .1 1 1e−4it e−4it0 0 

0 
2 − 

0 0 0 
2 2 2

Eqs. (7), (8), and (9) give us the spin operators. 
⎛ 

⎜⎜⎝ 

0 1 0 0 
1 0 0 0 
0 0 0 1 
0 0 1 0 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

0 0 1 0 
0 0 0 1 
1 0 0 0 
0 1 0 0 

⎞ 

⎟⎟⎠Ŝx 
1 Ŝx 

2 = =, , 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

0 00 −i 
i 0 

0 0 −i 0 
0 0 00 0 −i 

0Ŝy 
1 Ŝy 

2 = =, ,0 0 0 −i 
i 0 

i 0 0 
0 0 0 i 0 0 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

−1 0 0 0 
0 1 

0 0 0−1 
00 0 −1 0 0 

0 1 0Ŝz 
1 Ŝz 

2 = =, ,0 0 −1 0 
0 0 1 

0 
0 0 0 0 1 

We use Eq. (13) to construct the density matrix. 

4 

Unknown
Batell B.                                                                                             UW-L Journal of Undergraduate Research VI (2003)



1 2 3 4

- 1

-0.5

0.5

1

- 4 - 2 2 4

0.2

0.4

0.6

0.8

1
G1

z(t) G1
z(   ) ω

t

ω

1: Plot ofFIGURE zG1(t) and spectra for a 2­spin lattice in an unpolarized and highly polarized 
system. 

ρ̂ = 

⎛
⎜⎜⎜⎝ 

2b 

e
− √

3 0 0 0 
0 0 0 0 
0 0 1 0 

2b

0 0 0 e 
√

3 

⎞
⎟⎟⎟⎠ 

. 

The parallel and transverse spin matrices are the final components necessary before we can 
calculate the correlation functions. Using Eqs. (14) and (15) we have 

ŝz 
1 = 

⎛ 

⎜⎜⎝ 

0 0 0 0 
0 −2 0 0 
0 0 2 0 
0 0 0 0 

⎞ 

⎟⎟⎠ 
+
1, ŝ = 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ , 

0 −2 2 0 
0 0 0 

0 0 0 0 
2 −2 0 0 0 

2 010 0 0 −2 , ŝ−

0 0 
0 0 

0 0 0 2 −2 0 

From here, it is straight forward to calculate the correlation functions: 

z 
1ρ ˆˆU † ̂ z 

1Û ̂[ ]Tr s s
(t) cos 4t,zG1 = = 

[ z 
1ρ̂ ˆ z 

1ŝ ]Tr s

2b 
+
1ρ ˆˆU † ̂

1 
ˆs−U ̂ +4it√

3 e−4it[ ]Tr +s e+
1 (t)G = = 2b ,+

1ρ̂ ˆ[ 1ŝ
−]Tr 1 + e 

√
3s 

and the spectra: 

1
(ω) = √

2π 

� ∞ 

cos 4teiωtdt = 
� 

π 
2

(δ(ω − 4) + δ(ω + 4)), 
−∞ 

2b 2b 

1 
� ∞ e 

√
3 
+4it + e−4it 

√
2π(δ(ω − 4) + e 

√
3 δ(ω + 4))iωtdt =e2b

zG1

+
1 (ω)G = √

2π 
.2b√

3−∞ 1 + e 
√

3 1 + e 
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: Parametric plot of Re[G (t)] and Im[ (t)] as t goes from 0 to 20 seconds and spectra G

for various degrees of polarization for a 2­spin lattice varying degrees of polarization. 

FIGURE 3 z 
1


+
1 

+
1: Plot of G (t) and parametric plot of Re[ (t)] and Im[ (t)] and spectra for various G G

degrees of polarization for a 4­spin lattice. 

FIGURE 4: Plot of G (t) and spectra for an 8­spin lattice with various degrees of polarization. z 
1


6 

Unknown
Batell B.                                                                                               UW-L Journal of Undergraduate Research VI (2003)



-1 0 1 2

0.02
0.04
0.06
0.08

0.1
0.12
0.14

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 0 1 2

0.05
0.1

0.15
0.2

0.25

1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 0 1 2

0.5

1

1.5

2

-1 -0.5 0.5 1

-1

-0.5

0.5

1
Im  

Re  Re  Re  

Im  Im  
G1

+(t) G1
+(t) G1

+(t)

G1
+(   ) ω G1

+(   ) ω G1
+(   ) ω

ω ωω

b=0

b=0

b=2

b=2 b=8

b=8

| � 

�

| �
|	 �

1 (t)] and Im[G+FIGURE 5: Parametric plot of Re[G+
1 (t)] as t goes from 0 to 20 seconds and spectra 

for various degrees of polarization for an 8­spin lattice varying degrees of polarization. 

[3] R. Ragan, K. Grunwald, and C. Glenz, J. Low Temperature Phys. 126, 45 (2002). 

[4] F.D.M. Haldane and M.R. Zirnbauer, Phys. Rev. Lett., 71, 4055 (1993). 

[5] R. Feynman, The Feynman Lectures on Physics (Addison­Wesley 1965). 

[6] D.	 Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions 
(Addison­Wesley 1990). 

APPENDIX 

We can also represent the state vectors in Eq. (1) in binary notation in the following manner. For 
the jth position, we will write 1 if Sj

z = ↑� and 0 if Sz = ↓�. The subscript n in Eqn. (1) is j 
determined by the following relation: 

| � | | � | � |

N

n = 
� 

δ1|Sz
j 

2N −j . 
j=1 

For example, suppose we are dealing with a 4­spin system and one of the state vectors is | ↓↑↓↑�. 
Using the system above, we would write this as 0101 . Therefore, we would write this vector as 
ψ5 . 
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