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ABSTRACT 
A possible data encryption scheme is to add a small amplitude message to a larger amplitude 
chaotic carrier signal.  The primary objective of this research was to see if a neural network could 
approximately recover the hidden message if was given the intercepted signal. It was found that 
even with a reasonably complex carrier signal, the message was, to an extent, recoverable.  The 
remainder of the research focused in improving and quantifying the quality of the approximately 
recovered message. 
 

INTRODUCTION 
Suppose you wanted to send a secret message to someone else.  The person receiving the message would have 

to know how the secret message was created so they could decrypt the content.  When a secret message is being 
encrypted, the encryption should be as complex as possible so that if anyone were to intercept the message, they 
would not be able to decrypt it. 

In mathematics, chaos is characterized by long term non-periodic behavior in a deterministic system which 
exhibits sensitive dependence on initial conditions.  Two chaotic signals that are initially very similar will eventually 
diverge from each other.  This makes the exact long term behavior of a chaotic signal difficult to predict, though the 
overall pattern of the signal may be quite easily understood.  A good example is the weather, we know in advance 
that the overall pattern will include four seasons, but we cannot possibly predict whether or not it will rain on a 
particular day three weeks from now.  

Because of this dependence on initial conditions, a chaotic signal is a perfect candidate for the carrier signal.  A 
carrier signal is what is added to the message being sent to “hide” the message.  The person receiving the message 
would know the exact initial conditions of the chaotic carrier and could exactly replicate it.  However, if a person 
was to intercept this signal, it should be nearly impossible to guess the initial conditions exactly correct making it 
nearly impossible to figure out the carrier signal. 

Edward Lorenz was a meteorologist and mathematician from MIT.  In 1963, he published a paper called, 
“Deterministic Non-Periodic Flows” in which he introduced the Lorenz Equations.  They were originally used to 
model some of the unpredictable behavior which we normally associate with the weather.  The Lorenz equations 
produce chaotic solutions…they have sensitive dependence on initial conditions.  Since the Lorenz equations are 
widely studied, they were used to generate the chaotic carrier signals.  The Lorenz equations are the system of 
differential equations found in Figure 1.  A three dimensional solution can be seen in Figure 2a.  Figure 2b shows a 
plot of each of the coordinates plotted against time. 
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Figure 1: The Lorenz Equations.  σ, r, and β are positive constants. 
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(a)           (b)  
 

Figure 2:  A solution to the Lorenz equations with r = 28, σ = 10, β = 8/3.  The left figure (a) shows a three dimension view of the solution, while 
the right figure (b) shows the x (red), y (green), and z (blue) coordinates of the solution versus time. 

 
 

Figure 3 shows the general scheme for how chaotic encryption would work.  In this example, the “carrier” 
signal is a sine curve and the message is just a randomly generated signal.  Here you can tell just by looking at the 
graph that there is something extra added in.  If this were to be actually used, the amplitude of the message would be 
so small compared to that of the carrier that the graphs of the carrier and the carrier+message would look identical to 
the naked eye. 

 
 

 
Figure 3: The carrier and the message are added together to give the carrier+message signal which is the signal that would be sent. 

 
 

Neural networks are complex mathematical functions that can be used for pattern recognition and time series 
prediction.  In this work we are particularly interested in time series prediction.  A time series is a sequence of 
vectors, where  represents elapsed time.  For simplicity, we will discuss the case in which the 
sequence is of scalar values, thought the techniques generalize easily to vector sequences.   Theoretically, 

,...,1,0),( =ttx t
x  may be 

any value which varies continuously with time t , such as temperature.  In practice, x  will be sampled at regular 
time intervals to give a series of discrete data points.  Work in neural networks has focused on forecasting future 
development of the time series from values of x  up to the current time.  Formally, this can be stated as: find a 
function  to obtain an estimate of RRf N →: x at time 1+t , from the data time steps back from time t , so 
that: 

N
))1((( ),...,1),(()1 +−− txtx =+ xtxft N .  See Figure 4 for a graphical view of this neural network. 
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Figure 4:  The standard method of performing time series prediction using a sliding window of, in this case, three time steps. 
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Details about the structure of the approximating function  (in our case, as is standard,  is a linear 
combination of hyperbolic tangent functions) can be found in many textbooks on neural networks.  Throughout this 
work, we have used the Neural Network System Identification Toolbox (NNSYSID) software (Nørgaard, Ravn, 
Poulsen and Hansen, 2000) to find the approximating function . 

f

f

f

Because neural networks have been shown to be capable of learning and reproducing chaotic signals (Frank, 
Davey, and Hunt, 2001) our idea is to use a neural network to identify the carrier signal in an encrypted message.  
While no neural network can exactly predict the future behavior of a chaotic signal, a neural network can be used to 
find the overall pattern of a chaotic signal.  In our case, we are not interested in predicting the future behavior of a 
chaotic signal, but instead we have a signal which is composed of two parts, a chaotic carrier signal and a message 
and we wish to separate the two.   In this work, we assume that the message signal is essentially random noise 
without structure.  The message signal can be regarded as high frequency noise and the chaotic carrier signal is a 
low frequency signal (varies slowly in time – see Figure 2b).  The neural network attempts to identify or “learn” the 
chaotic part of the encrypted signal.  Thus the output of the neural network is a predicted version of the carrier 
signal.  In this way, the neural network can be thought of as a “low pass” filter – slowly varying, low frequency parts 
of the signal are passed through, while quickly varying, high frequency parts of the signal are removed or filtered 
out.  Using the approximated carrier signal that is predicted from the neural network, we can subtract it from the 
encrypted signal to get an approximation to the original message. 

 
METHOD 

A lot of this research was trial and error.  It is difficult to understand and especially hard to predict how well a 
certain neural network will be able to predict the carrier signal.  For this reason, much of the first portion of the 
research was simply trying different structures of neural networks (such as how many past input points were used to 
predict the next point) to see what worked the best.  It seemed there were certain network structures that were better 
than others.  Obviously, better results were obtained the more inputs that were used.  For example, if only one past 
input was given to the neural network, it did a poor job of predicting the next point.  If you gave it say five points, 
however, it did a much better job of predicting the next point.  The more past input points that were used, the more 
complex the structure of the network.  Increasing the number of past inputs indefinitely eventually results in a 
network that does not predict the carrier signal as well.  It was found that 5-8 past inputs yielded neural networks 
that best predicted the chaotic carrier signal.  As we show in the Results section below, the approximately decrypted 
message was of medium quality using this approach. 

In an attempt to understand why the neural network was not doing a better job of approximating the chaotic 
carrier signal, we conducted some experiments in which the chaotic carrier signal was allowed to have multiple 
components.  At each point in time, the carrier signal consisted of a vector of data from two or three coordinates of 
the chaotic signal generated by the Lorenz equations (see Figure 3). This does not correspond to a real encryption 
scheme in which the carrier signal would consist of a single chaotic signal, rather this was a scientific exercise to see 
how well the neural network could approximate the chaotic carrier signal if the time series contains more 
information about the chaos.  In some cases, as is shown below, the neural network is able to nearly perfectly 
recover the encrypted message when the carrier signal is multi-dimensional. 

Another direction in this research was to see how the content of the message affects the ability of the neural 
network approach to decrypting it.  Two kinds of messages were used, the first was a random message in which the 
message consisted of random numbers chosen from a normal distribution, the second type of message was an actual 
digital audio signal.  The digital audio signal has some structure (it is, after all, sampled sound waves), but the sound 
oscillations are of much higher frequency (shorter time scales) than the oscillations of the chaotic carrier signal.  In 
spite of the seemingly poor performance of the neural network at approximating the chaotic carrier signal and 
decrypting the message, the digital audio message was recovered and intelligible.  Reasons for this discrepancy are 
discussed below. 

 
RESULTS 

For the chaotic carrier signal, the Lorenz equations were simulated (as in Figure 2b) and the x-coordinate was 
saved at time intervals of 0.125.  To measure the amplitudes of the signals, standard deviation was used as a measure 
of a typical oscillation in the signal. 

The first portion of this research was done using a message consisting of normally distributed random numbers 
with zero mean.  The standard deviation of the carrier signal is about 7.7 while the standard deviation of the random 
message is normalized to be about 0.031.  Thus the message to carrier signal ratio was 0.4%.  The time series 
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consists of 1600 numbers.  Typical results of a neural network approximation to the message are shown in Figure 6 
below.  In this case, the past five values in the time series are used to predict the next one.   

To measure the error in the approximation of the message, two quantities were measured.  The first is Pearson’s 
correlation coefficient, r , between the approximated message and the actual message.   
Two signals are perfectly correlated if 1+=r  or )1( −=r .  The second was the square of the relative error, 

.  If two graphs are identical, ∑ −= 2 )(/))()(( txtytxerror ∑ 2 )()( tytx − will be zero so the numerator of 
this fraction will be zero and the error will be zero. 
 

 
Figure 5:  A typical neural network result with a randomly generated signal. 
The black line is the actual message and the red line is the predicted message. 

Here, r = 0.60432 and error = 1.5513.   
Only the first 100 values in the time series are shown. 

 
The neural network approximation to the message shown in Figure 5 indicates that the recovered message has 

some of the same features as the original message, but the correlation coefficient value of  is not especially 
high. 

60.≈r

The neural network functions as a low-pass filter that removes the high frequency components from the 
encrypted signal (which consists of carrier+message).  A simpler low-pass filter is to take a “sliding” average of 
neighboring points in the time series.  We call this the “average method”.  To get the averaged time series, in this 
case the predicted carrier signal, we use 3/))1()()1(()( +++−= txtxtxtx .  The average method filters out 
high frequency components from the encrypted signal to get a prediction of the carrier signal as shown in Figure 6. 

 
 

Carrier+Message 
0.9847     0.8905     0.8557     0.7560     0.7227     0.7552     0.7469 

 
 

0.9376     0.9103     0.8341     0.7781     0.7446     0.7416     0.7436 
Predicted Carrier 

 
Figure 6:  The top set of data is the carrier+message.  To get the predicted carrier,  

an average is taken of the point and the point on either side of it. 
 
 

Using the average method to predict the carrier signal and recover the encrypted message gives surprisingly 
good results that are comparable to those obtained by the neural network approach; see Figure 7. 
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Figure 7:  A typical average method result with a randomly generated signal. 
The black line is the actual message and the red line is the predicted message. 

Here, r = 0.59724 and error = 0.92584. 
 
 

Since neural networks are usually good at predicting chaotic behavior, it was a bit surprising that the neural 
network message recovery did not work appreciably better than the far simpler average method.  We hypothesized 
that the neural network was unable to learn enough about the chaotic signal from the one-coordinate time-series to 
completely predict the chaotic carrier signal.  As an experiment we tried allowing each value of the carrier signal to 
be not just a simple scalar, but rather a vector coordinates from the simulated Lorenz equations.  It was found that if 
each element in the time series was a vector consisting of both the x- and y-coordinate values (see Figure 2b) and 
that if the message to be hidden was added to the x-coordinate, then the neural network approximation to the 
message was nearly perfect; see Figure 8.  Again, the past 5 elements in the time series were used to predict the next 
element. 

 
Figure 8:  A typical result when the neural network was given both the x and y coordinates 

with the message only added to the x coordinate. 
The black line is the actual message and the red line is the predicted message. 

Here, r = 0.9344 and error = 0.14381. 
 
 

To investigate how the ability of the neural network to decrypt a message depends on the structure of the 
message, digital audio clips were encrypted by adding them to a chaotic carrier signal as described above.  Digital 
audio, in its simplest form, is a time series of sampled values that describe oscillations at different frequencies which 
we hear as different pitches.   Again, the message was added to a time series of chaotic values from the x-coordinate 
of the Lorenz equations and a neural network, using 5 past values, was trained to approximate the carrier signal.  
Results are shown in Figure 9.  The correlation coefficient of 21.≈r  is significantly lower than when the message 
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was randomly generated.  The squared relative error is also lower.  This would seem to indicate that the neural 
network is doing a poor job of recovering the digital audio message.  However, the approximated message is in fact 
clearly audible with only a slight buzzing noise. 

 

 
Figure 9:  Actual audio results from the neural network. 

The black line is the actual message and the red line is the predicted message. 
Here, r = 0.20588 and error = 1.0647. 

 
 

For complete comparison, the average method was employed to approximately recover the encrypted digital 
audio clip.  Surprisingly, the correlation improves to  33.≈r  and the squared relative error decreases to .91.  
However the quality of the sound recovered from the encrypted digital audio using the average method is much less 
than the sound quality from the neural network.  This indicates that the quantities we are using to quantify the 
quality of the message approximation do not reflect the right things.  The recovered message can be poorly 
correlated with the actual message yielding a low correlation coefficient and yet an audio message is still perfectly 
intelligible. 

To analyze the performance of the neural network in decrypting an audio message, power spectra were used.  
Power spectra are obtained using the Fourier Transform.  They are used in analyzing audio message.  The power 
spectra itself is a graph of all the frequencies (measured in Hz – vibrations per second) on the x axis, and the power 
(amplitude) of each frequency is on the y axis.  Therefore, an audio signal that contains a lot of a certain frequency 
would have a high peak at the corresponding frequency whereas a frequency that was not as prevalent would have a 
small peak at its respective frequency.  The power spectra for the original message and neural network decrypted 
message are shown in Figure 10.   

 

  
Figure 10:  Power spectrum of original message (left) and power spectrum of decrypted message (right). 

 
 
The shape of the power spectrum of the decrypted message agrees with that of the original message at 

frequencies from approximately 700 Hz to 1700 Hz.  Human hearing is most acute at frequencies between 500 Hz 
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and 2000 Hz.  Thus the neural network does a good job of decrypting the important frequencies in the audio 
message.  Notice however, that the neural network decrypted message has a lot of “noise” at frequencies above 2000 
Hz that was not in the original audio message.  This extra noise is, at least partially, responsible for the low 
correlation coefficient between the original and decrypted messages.  By comparing only the content of the original 
and decrypted messages between 500 Hz and 2000 Hz, it was found that the correlation coefficient for these 
“cleaned” messages was 0.57 (while being only 0.44 for the average method).   
 
CONCLUSIONS 

More research should be done to understand how well a neural network can decrypt messages hidden by chaotic 
encryption.  Mathematically, it is known that chaotic signals can be reconstructed from time series, but there is less 
work on how this is to be done in practice.  This work shows that the ability of the neural network to decrypt 
messages will depend on the structure of the message.  Furthermore, simple measures of the quality of the decrypted 
message such as the correlation coefficient and the squared relative error fail to reflect ability of the neural network 
to decrypt the hidden message – the neural network did a good job of decrypting an audio message in spite of the 
low mathematical correlation with the original message.   
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