
Ragatz UW-L Journal of Undergraduate Research (2016)

1

Performance and Usability Improvements to an Image-Analysis

Program for Microtubules

Justin Ragatz

Faculty Sponsors: Samantha Foley, Computer Science and Taviare L. Hawkins,

Physics

ABSTRACT
Microtubules must be rigid enough to support the structure of a cell, while simultaneously being

dynamic enough for intracellular transport. Any abnormalities in this balance may result in cancer,

birth defects, or cell death. MT-Flex is an image-analysis program used to study the persistence

length of microtubules. The persistence length is a property that quantifies the stiffness of a

polymer, such as a microtubule. However, the original design of the program took an excessive

amount of time to run, did not include any automated error checking, and returned results in an

unorganized format. Moreover, flaws in the design of the code made the application difficult to

use. Upon removing all unnecessary reading of data and restructuring the code, a speedup of 2.019

was achieved. Furthermore, the structure of the code and format of the output is now more

intuitive, making it easier to use for both experienced and first-time users.

INTRODUCTION
The cytoskeleton is a series of intracellular proteins that supports a cell’s shape and is essential for many

cellular functions. This intracellular matrix is comprised of three protein filaments: actin filaments, intermediate

filaments, and microtubules.[1] Unlike actin and intermediate filaments, microtubules are in a constant state of

assembly and disassembly. This unique characteristic is essential for cell division, neuronal cell development,

cellular maintenance, and ciliary beating in the lungs, kidneys, and intestines. Any abnormalities in the structure of a

microtubule may result in cancer, birth defects, or cell death.[1] Thus, increasing our understanding of this process is

of particular importance.

Microtubules must be rigid enough to support the structure of a cell, while simultaneously being dynamic

enough to allow intracellular transport.[2] The flexibility of a polymer is measured by the persistence length of the

object.[3] An object that is shorter than its persistence length is considered more flexible, while an object that is

longer than its persistence length is considered more rigid. Studying this property begins with imaging a microtubule

under fluorescence. These images, 1,000 in total, are read in by the MT-Flex application which divides each frame

into 23-35 segments of equal length. For each segment the position, length, and angle are determined. These

properties are then used to calculate the Fourier mode amplitudes for the first 25 modes. The resulting Fourier series

approximates the shape of the microtubule. Given that the Fourier series is an approximation of the molecule’s

shape, the persistence length is of course inversely proportional to the variance of the mode amplitudes.[3] Thus, the

persistence length of the molecule is determined using the first 2-4 modes of the Fourier series.

 This paper describes the original MT-Flex code, the motivation for the changes made, and how these

modifications improve the usability of the application. The original application section describes the purpose of the

application, how the MT-Flex code is used, and the issues which motivated the changes to the application. The

requirements section details the changes that were identified as essential to improving the usability of the

application. The new design section summarizes the changes that were made to the application and the performance

Ragatz UW-L Journal of Undergraduate Research (2016)

2

improvements that were achieved. Finally, the paper concludes with a summary of how the modifications made

benefit the scientists who use the application.

ORIGINAL APPLICATION
The purpose of the MT-Flex code is to efficiently analyze the persistence length of a microtubule from a series

of image files. Scientists are able to evaluate more data sets in less time by using this application to measure the

microtubules, as opposed to doing this manually. The application is written in MATLAB due to the language’s

reputation for excellent matrix operation performance, and its popularity among science communities.

 The first thing a scientist must do to use the application is to insert 1000 tiff files (for example image1.tiff,

image2.tiff, ... , image1000.tiff) into the folder containing the MATLAB files. These files should all have the same

prefix (for example "image") and this prefix must be placed into the Movie_No.txt file. The application reads in any

tiff files that match the naming and numbering pattern. Next, the scientist must open the

MAIN_PROGRAM_MOBILIZED.m and MT_Final_Results.m files. The camera magnification value located in these

files must be updated with the level of magnification that was used in the microtubule imaging process.

Additionally, the scientist must open the Image_Stack_MT_Skeletonization.m and MT_Skeletonization.m files to

update the spur number and threshold value, respectively. The spur number limits the length of any branches on the

microtubule image, and the threshold number defines the threshold for binary image conversion. Finally, the

scientist must return to the MAIN_PROGRAM_MOBILIZED.m file and run the application. A summary of how to

set up a run in list format is described in Table1.

Table 1. Summary of how to set up a run.

Step Task

1 Place tiff files in the main level of the working directory.

2 Enter the naming format in the Movie_No.txt file.

3 Confirm that all tiff files conform to the naming format entered in

the Movie_No.txt file.

4 Confirm or change the camera magnification in the

MAIN_PROGRAM_MOBILIZED.m and MT_Final_Results.m

files. The value must be changed in three locations in the

MAIN_PROGRAM_MOBILIZED.m file.

5 Confirm or change the spur number in the

Image_Stack_MT_Skeletonization.m file.

6 Confirm or change the threshold value in the

MT_Skeletonization.m file.

7 Run the Program from the MAIN_PROGRAM_MOBILIZED.m

file.

The first step in the analysis process is to skeletonize the tiff files. Each tiff file is first converted to a binary

black and white image. Any pixel with luminance greater the threshold number is replaced with the value 1 (white)

and all other pixels are replaced with the value 0 (black). The result is a single, continuous curve with a width of one

pixel. However, some images may still contain small blemishes that branch off of the main curve. If a branch is

shorter than the spur number value, then the branch is trimmed. Figure 2 depicts the output from the skeletonization

process for the sample image Figure 1. Once the microtubule has been skeletonized the program divides the contour

into 23-25 segments of about equal length and calculates: the total number of segments, the exact length of each

segment, and the angle of each segment. These properties are used to compute the first 25 modes for each segment

Ragatz UW-L Journal of Undergraduate Research (2016)

3

and the variance across the 1,000 frames. The output of the application is a collection of text files and plots

detailing: the number of segments each frame is split into, the length of the microtubule in each frame, and the

calculated modes.

Figure 1. Sample image before skeletonization.

Figure 2. Sample image after skeletonization.

While the original MT-Flex code is a vast improvement over performing the analysis by hand, there are some

major limitations. Data is passed from one MATLAB function to another by writing the values to a text file and then

reading that information back into the other function. The skeletonization step, which generates large matrices of

data for each frame, accounts for 58.8% of the 314.07 second total runtime. In addition to increasing the runtime,

this step generates 5,992 text and tiff files. Thousands of these text files contain only a single word or number; their

only purpose is to pass data between functions. Moreover, Table 1 lists the multiple locations where values are

hardcoded. It is quite easy for a user to overlook one of these locations and generate incorrect data, without being

aware of their mistake.

REQUIREMENTS
The primary objective of modifying the MT-Flex code is to remove the extraneous file reading and writing

system in order to decrease the runtime of the application. Any data that is only needed for intermediate steps should

be held in memory, rather than written as output. Furthermore, the output that is deemed relevant should be returned

in a more useful format. For example, the text files generated by the original application are typically not used in

that format by the user. Rather, the contents are manually copied-and-pasted into a spreadsheet for further analysis.

As mentioned earlier and depicted in Table 1, the multiple hardcoded values located throughout the code are a

nuisance for the user to update and are a likely source of error. This issue is remedied rather quickly by storing the

values as variables in the main function. Throughout this process other simple opportunities for improvement were

uncovered.

NEW DESIGN
Major changes to the MT-Flex code include: the elimination of file reads, consolidating the functions based on

purpose, writing the output in a more useful format, the addition of error-checking functions, and improved console

output. While improvements to the user experience are significant, the primary objective of the new design is to

improve the runtime of the application. After removing all unnecessary reading of data and restructuring the code, a

speedup of 2.019 was achieved. Additionally, after the resource heavy skeletonization step, a speedup of 3.956 for

the actual analysis portion of the program was achieved. The performance results are summarized in Table 2. All

runs were performed on an Apple iMac with a 2.8 GHz Intel Core i7 processor. MATLAB’s built-in run-and-time

Ragatz UW-L Journal of Undergraduate Research (2016)

4

feature was used to clock the program. Prior to each execution of the code, the entire MATLAB variable workspace

was cleared; however, the output files were untouched. This scenario simulates the most common use-case for the

program.

Table 2. Summary of performance results.

 Total Time (s) Time after Skeletonization (s)

Original Design (N = 8) M = 314.072 M = 128.099

 SD = 5.923 SD = 3.375

New Design (N = 8) M = 155.564 M = 32.514

 SD = 0.764 SD = 0.931

Speedup 2.019 3.956

N, number of trials; M, mean; SD, standard deviation.

The first step in improving the runtime of the code was to remove extraneous file reading and writing. Each

function is now defined with the variables that it requires and the data that it returns as parameters. Beyond the

improvement in runtime, the new design provides the user with a better understanding of the dataflow throughout

the application.

The original fifteen (15) functions were reorganized into eight (8) functions. Five remained as their own

function, two were removed entirely, and the rest are combinations of the original functions that are related to each

other. The list of files from both versions, fifteen in the old version and eight in the new, are shown in Table 3. Each

function now accomplishes a specific and clear step in the analysis process. Consequently, there is now minimal

data that is required in multiple functions. The steps required to run the new design of the application are

summarized in Table 4.

Table 3. Reorganization of functions.

Step New MATLAB Files Original MATLAB Files

0 mt_main.m MAIN_PROGRAM_MOBILIZED.m

 →configure.m

1 →mt_skeleton.m →Image_Stack_MT_Skeletonization.m

 →MT_Skeletonization.m

2 →mt_skeleton_error_check.m

3 →mt_properties.m → Image_Stack_MT_Properties.m

 →MT_Properties.m

4 →mt_properties_plot.m →MT_Properties_Plot.m

5 →mt_modes.m →MT_Modess_1.m

 →MT_Modess_2.m

 →MT_Variance_Averages_1.m

 →MT_Variance_Averages_2.m

6 →mt_variance_averages_plot.m →MT_Variance_Averages_Plot.m

 →MT_Variance_Averages_3.m

7 →mt_estimates_wo_noise.m →MT_Estimates_woNoise.m

8 →mt_estimates_w_noise.m →MT_Estimates_wNoise.m

 →MT_Final_Results.m

Ragatz UW-L Journal of Undergraduate Research (2016)

5

Table 4. Summary of how to set up a run with the new design.

Step Task

1 Place tiff files in the 0-frames folder.

2 Confirm or change the camera magnification, spur

number, and threshold value in the mt_main.m file.

3 Run the program from the mt_main.m file.

The functions Variance_Averages_3 and Final_Results have been removed entirely. The role of these functions

is to move and rewrite files in the directory in a more user friendly format. However, in the new design the output is

always written to the correct location and in the correct format the first-time. This includes writing the results as

Comma Separated Value files rather than text files that are then copied into a spreadsheet format later. The reduction

of the number of files that are written is summarized in Table 5. Additionally, instead of writing thousands of files

to the main level of the directory a new folder system has been implemented. Each function that outputs data now

has a corresponding folder in the directory. This change does not reduce the runtime of the program, but it does

greatly increase the usability of the results.

Table 5. Changes in output for step five of the MT-Flex program. Each .csv file contains the same data as the

corresponding .txt from the original design, but in a more usable format.

Purpose of data Original New

Number of segments 3 .txt files 1 .csv file

Length of microtubule 1,002 .txt files 1 .csv file

Modes 2,050 .txt files 1 .csv file

Absolute modes 1 .txt file 1 .csv file

Average and variance for modes 25 .txt files 1 .csv file

After the major drawbacks of the original application were addressed, some simple, but beneficial areas of

improvement were identified. Most notably the original application lacks any error-checking functions. While not

necessary for every run of the application, any error-checking process that is easily automated should be left to the

application, not the user. First, a configuration function was added in order to ensure that all of the required

MATLAB files are present, that the new output files are in place, and that the tiff file folder is non-empty. If any of

the output folders are not present, then the configuration function creates them. Additionally, the

skeleton_error_check function was added to identify any discontinuities in the skeleton images. For any skeleton

images that are not continuous, the function returns an error message with the image name and number of

discontinuities in the curve. This type of error checking was previously done by scrolling through the images and

spotting any discrepancies by visual inspection.

The final simple fix identified was to improve the clarity of the console output. The ambiguous and unorganized

console output of the original MT-Flex code is one of the most common complaints about the application. The

original output is located in Appendix A. The majority of the information included is not relevant to a user who is

not familiar with the internal design of the application. The step being run is printed to the console, but the total

number of steps is not included. Unless the user is familiar with the program, there is no indication of how much

longer the application will run. Additionally, messages from internal MATLAB functions are printed to the console.

Ragatz UW-L Journal of Undergraduate Research (2016)

6

These messages are not relevant to a scientist using the application and should be suppressed. The new format is

pictured in Figure 3. With this format, a user is updated about progress of the program by a brief description of what

is accomplished at each step of the analysis process. This console output is useful to both experienced and first-time

users.

Step 1 of 8: Skeletonize images..................................... Complete

Step 2 of 8: Error check.. Complete

Step 3 of 8: Determine skeleton properties.......................... Complete

Step 4 of 8: Plot the first frame................................... Complete

Step 5 of 8: Calculate the first 25 modes and related information... Complete

Step 6 of 8: Plot the modes and amplitudes.......................... Complete

Step 7 of 8: Theoretical expectation for L_p from lower mode........ Complete

Step 8 of 8: Noise contribution and plots to display corrections.... Complete

Figure 3. Console Output of the new design.

The accuracy of the new design was verified by comparing the output of both versions for a given set of tiff

files. Each function was compared individually before the accuracy of the entire application was verified. In addition

to comparing the values output to the text files, the multiple plots generated by the application were inspected for

any discrepancies.

CONCLUSIONS
 The mechanics of microtubules affect numerous cellular processes. The ability of a microtubule to properly

perform these functions is dependent on the stiffness of the microtubule. Persistence length is a mechanical property

that quantifies the stiffness of a polymer, such as a microtubule. While the original MT-Flex code is a beneficial tool

for studying the persistence length of microtubules, the prolonged runtime and lack of usability create difficulties for

the scientists using the application. This paper described the main issues with the original application and how the

new design solves them. The new design of the application is 2.019 times faster, performs error-checking itself

rather than the user, and returns the results in a more usable format. These changes reduce the amount of time that a

scientist must spend on the application before useful data is retrieved. After reorganizing the original workflow,

each function now performs a defined step in the image-analysis process. These changes coupled with the improved

console output increase the clarity of the application, and reduce the amount of time a scientist much spend learning

about the application itself, rather than utilizing it.

REFERENCES
[1]Megan Bailey, Leslie Conway, Michael W. Gramlich, Taviare L. Hawkins, and Jennifer L. Ross. Modern methods

 to interrogate microtubule dynamics. Integrative Biology, 5 (11). 1-6.
[2]Taviare L. Hawkins, Matthew Mirigian, M. Selcuk Yasar, and Jennifer L. Ross. Mechanics of microtubules.

Journal of Biomechanics, 43 (1). 2-7.
[3]Taviare L. Hawkins, Matthew Mirigian, Jingqiang Li, M. Selcuk Yasar, Dan L. Sackett, David Sept, and Jennifer

L. Ross. Perturbations in Microtubule Mechanics from Tubulin Preparation. Cellular and Molecular

Bioengineering, 5 (2). 1-8.

Ragatz UW-L Journal of Undergraduate Research (2016)

7

Appendix A

running Image_Stack_MT_Skeletonization..

Expecting tiff files with "t" instead of "_" character

If you do not want this change it in Image_Stack _MT Skeletonization.m

running filename: noshear_029t*.tif

Ran Image_Stack_MT_Skeletonization

running Image_Stack_MT_Properties..

Ran Image_Stack_MT_Properties

running MT_Properties_Plot..

moving the skeletonized files...

 Ran MT_Properties_Plot

running MT_Modess_1..

moving the mt_info files...

 Ran MT_Modess_1

running MT_Modess_2..

 Ran MT_Modess_2

 Ran MODES AND DEVIATIONS

running MT_Variances_Averages_1..

 Ran MT_Variances_Averages_1

running MT_Variances_Averages_2..

 Ran MT_Variances_Averages_2

 Ran MAKE AVERAGE AND VARIANCE CALCULATIONS

running MT_Variances_Averages_Plot..

 RAN MT_Variances_Averages_Plot..

running MT_Variances_Averages_3..

 RAN MT_Variances_Averages_3..

running MT_Estimates_woNoise..

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to its initial value

is less than the default value of the function tolerance.

<stopping criteria details>

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to its initial value

is less than the default value of the function tolerance.

<stopping criteria details>

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to its initial value

is less than the default value of the function tolerance.

<stopping criteria details>

 RAN MT_Estimates_woNoise..

 Ran STEP 9

running MT_Estimates_wNoise..

number_of_modes =

4

Local minimum found.

Optimization completed because the size of the gradient is less than the default value of the

function tolerance.

<stopping criteria details>

 RAN MT_Estimates_wNoise..

 Ran STEP 10

running MT_Final_Results..

Set to run on Andor Camera with 60X objective and 2.5 magnification. If not make changes in

MT_Final Results.m

 RAN MT_Final_Results..

 Ran STEP 11

DONE!

