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ABSTRACT 
The focus of this research project will be to support what we call the superellipse conjecture, a 
mathematical claim about shapes called superellipses. Superellipses are also called “squircles” for their 
geometric relationship to squares and circles. The superellipse conjecture claims that a certain pattern is 
present among superellipses with particular areas. The project will collect data to support this conjecture 
through computer calculations, and will additionally try to find a mathematical proof for the claim. 

 

PROBLEM INTRODUCTION 
In algebra, the unit circle has the following equation: x2 + y2 = 1. In this equation, the variables x and y are 

both being raised to the second power. The graph of this equation (a unit circle) is in Figure 1a. If we modify the 
equation to x3 + y3 = 1, the resulting graph no longer exhibits the same symmetries. Note that for any positive or 
negative number x, x2 = |x2|, i.e., the square of x is always the same as the absolute value of the square of x. This 
implies that the equation x2 + y2 = 1 is the same as the equation |x2| + |y2| = 1. If we use this fact to adjust the 
equation: x3 + y3 = 1 to: |x3|+ |y3| = 1, we obtain a graph (see Figure 1c.) that recovers some of the lost symmetries 
that did not appear in Figure 1b. 

 

              
                                  1a. x2 + y2 = 1                    1b. x3 + y3 = 1                    1c. |x3| + |y3| = 1 

Figure 1: Graphs of related equations 

In Figure 1c, we have an equation of the form  |xn|+ |yn|  = 1 (in this graph, n = 3). This equation represents a unit 
superellipse. Note that when n = 2, the superellipse is just a unit circle (as seen in Figures 1a and 2c). When n = 1, the 
superellipse forms the square depicted in Figure 2a. As the exponent n grows, the superellipse inflates to a shape that slowly 
approaches a 2 × 2 square. As n grows, so does the area. 

 

             
  2a. |x1| + |y1| = 1                 2b. |x2| + |y2| = 1                 2c. |x50| + |y50| = 1 

Figure 2: Graphs of |xn| + |yn| = 1 for various n 
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The area of the shape in Figure 2c is slightly less than 4. As n grows, the area of the corresponding superellipse 
approaches 4. Just as the area of the entire superellipse approaches 4, a quarter of its area, or its “quarter-area,” approaches 1. 
Note that when n = 1, a quarter of the superellipse’s area is equal to the area of the right triangle in quadrant 1 (see Figure 3a) 
which is exactly ½. In other words, as n grows larger and larger from 1, the area of the shaded regions shown in Figure 3 
ranges from ½ to 1. There are famous infinite sequences of numbers which share this same property. One such example is the 
following sequence: {½, ¾, ⅞, …}. This is an infinite list of numbers which range from ½ to 1. Since the quarter-area of the 
superellipse also ranges from ½ to 1, it must be that each number in that sequence represents the quarter-area of a superellipse 
corresponding to some number n. 

 

               
                          3a. n = 1, A = ½                    3b. n = 2, A = 𝜋/4                  3c. n ≈ 1.79, A ≈ ¾  

Figure 3: Graphs with various quarter-areas 

This was the inspiration for this project - to find what numbers n would correspond to areas in the form ½, ¾, ⅞, etc. The 
first n is already known, because n = 1 gives us the shape in Figure 3a whose quarter-area is ½. What if we want a quarter of 
our superellipse’s area to instead be ¾? Recall that when n = 2, our superellipse is a unit circle. A unit circle is just a circle 
with radius 1, so its area is 𝜋r2 = 𝜋(1)2 = 𝜋. Recall that 3.14 > 3, and that this implies that 𝜋/4 > 3/4. Since our area grows 
with n, and n = 2 makes the quarter-area 𝜋/4, it must be that the next n in the sequence is less than 2. The superellipse whose 
quarter area is ¾ is obtained by calculation when n is approximately 1.79 (see Figure 3c). For ⅞, the appropriate n value was 
found to approximately be 2.87. We can make a sequence out of these n values. If we let n1 = 1, n2 = 1.79, n3 = 2.87, etc., we 
will have a sequence of numbers where the kth (k is a positive whole number like: 1, 2, 3, etc.) item of the sequence: nk gives 
us a superellipse whose area is (2k - 1)/2k. Fifty terms of this sequence were obtained with a computer. The following trend 
was observed: as the sequence nk continues and k grows larger, the ratio of one term over the previous: nk+1 / nk approaches 
√2. 

It was later found that this observed trend was a part of a larger, more general pattern. Recall that in constructing the 
sequence nk, we had a defining requirement for our kth term, i.e., that the kth term would yield a quarter-area of (2k - 1)/2k. It 
turns out that the only special role played by the number 2 for this requirement is that it is a real number greater than 1. If we 
instead require that each nk yield a quarter area of (3k - 1)/3k, we would subsequently find that the ratio nk+1 / nk  approaches 
√3. This brings us to the superellipse conjecture: 
Fix r to be a real number greater than 1. Define A(u) := ∫ 	(1	 −	𝑥!)	"

#
1/u dx = [Γ(1 + 1/u)]2 / Γ(1 + 2/u). For each positive 

integer k, define nk to satisfy: A(nk) = (rk - 1)/rk  = 1 - 1/rk. Then lim
!→#

 nk+1 / nk  =  √𝑟. 

Note Γ is the Gamma function (see Davis 1959). Note that the expression A(u) denotes the value of the aforesaid 
“quarter-area” we are interested in. Specifically, A(u) denotes the quarter-area of the superellipse determined by the graph 
|xu|+ |yu| = 1, (see Dirichlet 1839 and Wittaker, Watson 1996), since the region under the graph is bounded by f(x) = (1-xu)1/u 
and the area under the graph of f(x) in the first quadrant is given by  ∫ 𝑓(𝑥)"

#  dx. The superellipse conjecture is an unproven 
mathematical statement (supported by computational evidence), and the goal of this research project is to provide a formal 
mathematical proof of why it is true. 

 

METHODS 
The superellipse conjecture is a novel mathematical statement we are trying to prove. Developing a formal proof 

involves theoretical analysis of the statement and the mathematical objects therein. A preliminary part of this analysis 
required data collection that supported the conjecture. The following R code was developed in order to collect data 
supporting the conjecture: 

r=2.3 
fn<-function(n,k){beta(1/n,1/n+1)/n-1+1/(r^k)} 
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n.iter=100 
lim=.0001 # The smaller this number is, the more precisely n is estimated. 
dat=matrix(data=NA,nrow=n.iter,ncol=2) 
dat[,1]<-1:n.iter 
colnames(dat)=c("k","n_k") 
# For k = 1 to k = n.iter, find the values of n that make the function fn equal to zero. 
i=1 
for(i in 1:n.iter){ 
  print(i) 
  dat[i,2]<-uniroot(fn,lower=0,upper=1e100,f.lower=-lim,f.upper=lim,k=i)$root 
  print(dat[i,2]) 
} 
This code first sets a real number value to the parameter r (playing the role of r in the conjecture). Then, for each 

integer value of 1 ≤ k ≤ 100, the code estimates the real number value of n which satisfies [Γ(1 + 1/n)]2 / Γ(1 + 2/n) - [1 - 
1/rk] = 0. For each k, choosing n in this way finds the value of n so that the quarter area A(n) is as close to 1 - 1/rk as 
possible, where A(u) is as defined earlier. The value of k and n are then stored to be plotted on a graph with the following 
code: 

index<-8:20 # Indexing which values to plot 
plot(dat[index,1],log(dat[index,2],base=r),xlab="k",ylab="logr(n_k)") 
coef<-summary(lm(log(dat[index,2],base=r)~dat[index,1]))$coefficients  
# This pulls out the coefficients of a simple linear regression of log(n_k) against k. 
intercept<-coef[1,1] 
slope<-coef[2,1] 
abline(intercept,slope,col="red",lty=1) # This makes a red fitted line. 
legend("topleft",legend=c(paste0("intercept=",intercept),paste0("slope=",slope)),bty="n")  
# Creates the legend 
The code above plots a graph wherein the x-axis is the k values, and the y-axis is logr(dat[index,2]), where 

dat[index,2] stores the value of n satisfying: A(n) - [1 - 1/rk] = 0. Plotting the data in this way allows us to observe 
whether or not the pattern stated by the conjecture holds. According to the superellipse conjecture, the term-by-term 
growth seen in the nk sequence is roughly exponential, which means it should be roughly log-linear. This is in fact what 
we observed for various values of r. 

After obtaining this data, we geometrically analyzed the graph of the superellipse. The steps of this analysis are laid 
out in Figure 4, based on fixing a constant u. Recall that f(x) = (1-xu)1/u. We will look for a geometric region whose area 
is smaller than the quarter area A(u), the area below the red curve. Figure 4a depicts finding the value of x which equals 
f(x), and the area of the square in Figure 4b is clearly a lower bound for the area below the red curve. A better lower 
bound is obtained by adding the two triangles in Figure 4c. 

 

           
4a. Solve x = f(x)                     4b. Obtain square                       4c. Add triangles 

Figure 4: Finding a lower-bound area formula 
 
Following these steps gives us a quadrilateral defined in terms of the constant u from f(x). More specifically, the 

quadrilateral has vertices (0,0) and (1,0) and (0,1) and the point on the curve f(x) = (1-xu)1/u  where x=f(x). This equation 
has a solution at x = (½)1/u for all u. This tells us that the quadrilateral’s fourth corner is the point ((½)1/u, (½)1/u), meaning 
the side length of the square in Figure 4b is (½)1/u – 0 = (½)1/u. Therefore, its area is ((½)1/u)2 = (½)2/u. To find the area of 
the two additional triangles, we must find their base and height. If we look at the top triangle in figure 4c, we can see that 
its base is the side length of the square: (½)1/u, and its height is simply (1 - (½)1/u). So the total area of the two triangles is 
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2*½*(½)1/u*(1-(½)1/u) = (½)1/u - (½)2/u. The area of the quadrilateral is simply the area of the square in Figure 4b with the 
area of the two triangles in Figure 4c added on. Therefore, its area is given by Alb(u) = (½)2/u + [(½)1/u - (½)2/u] = (½)1/u. 
Based on the picture, we know that the area of this quadrilateral is less than the quarter-area of the superellipse. To find a 
shape whose area is greater than the quarter area, a similar analysis was performed. The steps are laid out in Figure 5. 

 

         
 5a. Solve x = f(x)                    5b. Obtain square                     5c. Add rectangles 

Figure 5: Finding an upper-bound area formula 
 
The area of the shaded region in  Figure 5b is simply the total area of the 1 × 1  square minus the area of the empty 

region in the top-right corner of the square in Figure 5c. This is given by: Aub(u) = 1 - (1 - (½)1/u)2 = -(½)2/u + 2(½)1/u. 
Again, based on the picture, we can see that this region has an area that is greater than the quarter area. Using these area 
formulas: Alb(u), Aub(u), we can construct new sequences. Fix r > 1, and for each positive integer k, define Nk to satisfy 
Alb(Nk) = 1 - 1/rk, and define Mk to satisfy: Aub(Mk) = 1 - 1/rk. Unlike our original area formula, we can algebraically 
solve for when these requirements are met. 

First, we show that Nk = -1 / log2(1-1/rk). Suppose Alb(w) =  (½)1/w = 1 - 1/rk. Now we solve for w. 
log2( (½)1/w ) = log2( 1 - 1/rk ). 
log2( (2-1)1/w ) = log2( 1 - 1/rk ). 
1/w * log2(2-1) = log2( 1 - 1/rk ). 
1/w * (-1) = log2( 1 - 1/rk ). 
1/w = (-1) * log2( 1 - 1/rk ). 
[1/w]-1 = [-log2( 1 - 1/rk )]-1. 
w = -1 / log2(1-1/rk). Therefore, if Alb(Nk) = 1 - 1/rk, then Nk = w = -1 / log2(1-1/rk). 
We proceed in showing that Mk = -1 / log2(1-1/rk/2). Suppose Alb(w) =  -(½)2/w + 2(½)1/w = 1 - 1/rk. Let x = (½)1/w. Our 

equation then becomes: -x2 + 2x - (1 - 1/rk) = 0. Using the quadratic formula with a = -1, b = 2, and c = - (1 - 1/rk), we 
find that x = 1 ± 1/rk/2. Substituting (½)1/w for x, we must now  solve (½)1/w = 1 ± 1/rk/2.  

log2( (½)1/w ) = log2( 1 ± 1/rk/2 ). 
1/w * (-1) = log2( 1 ± 1/rk/2 ). 
w = -1 / log2( 1 ± 1/rk/2 ). 
Both of these are valid solutions, but if Mk = -1/log2( 1 + 1/rk/2), then Mk+1 / Mk turns out to be undefined. This is 

because  [-1/log2( 1 + 1/r(k+1)/2)] / [-1/log2( 1 + 1/rk/2)] = log2( 1 + 1/rk/2) / log2( 1 + 1/r(k+1)/2) = log2( (1 + 1/rk/2) - (1 + 
1/r(k+1)/2) ) = log2(1/rk/2 - 1/r(k+1)/2). Since r > 1, this final expression we get is plugging a negative number into a 
logarithm, and so this expression is undefined. Hence Mk = -1/log2( 1 - 1/rk/2) as the solution we used for computing 
ratios.  

Using R code, we found that lim
!→#

 Nk+1 / Nk  =  r, and lim
!→#

 Mk+1 / Mk  =  √𝑟. 

The motivation behind this analysis via lower and upper bounds is as follows: for each u, we have Alb(u) ≤ A(u) ≤ 
Aub(u). Recall for each positive integer k, we had nk was defined to satisfy A(nk) = (rk - 1)/rk  = 1 - 1/rk, and motivated by 
this, Nk and Mk  were analogously defined to satisfy Alb(Nk) = 1 - 1/rk and Aub(Mk) = 1 - 1/rk. Since Alb(u) ≤ A(u) ≤ 
Aub(u) holds, we investigated lim

!→#
 Nk+1 / Nk  and lim

!→#
 Mk+1 / Mk , and also asked whether either of these limits, if their 

values were obtained, would be relevant in determining lim
!→#

 nk+1 / nk  , the limit introduced in the superellipse 
conjecture. 

Other methods to analyze the conjecture were also used. One such method attempted to reverse the process of the 
construction of the sequence nk. Note that we ended with the claim that lim

!→#
 nk+1 / nk  =  √𝑟.  To reverse this process, we 

instead start by defining a sequence mk such that mk = (√𝑟)k-1. Using the same area formula for A(u), it is possible to 
compute values of A(mk). Note that for the sequence nk, by definition: A(nk+1) - A(nk) = (rk+1 - 1)/rk+1 - (rk - 1)/rk = [ (rk+1 
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- 1) - r(rk - 1) ]/rk+1 = [r - 1]/rk+1. In other words, our roughly exponentially-growing nk inputs are producing outputs that 
grow exactly at the rate of a geometric series. We felt it was valuable to investigate if our exactly exponentially-growing 
mk inputs would produce outputs that grow roughly at the rate of a geometric series. Put more precisely, if lk satisfies: 
A(mk) = 1-1/𝑟$!, then we expect this sequence to grow such that lim

!→#
 lk+1 - lk  =  1. Note that lk+1 - lk is given by the 

expression: logr(1/1-A(mk+1)) - logr(1/1-A(mk)). To see if this claim about the sequence lk is true, the following R code 
was written: 

k=1:100 
# Index of sequence 
r=1.5 
# Value of r 
m_k<-sqrt(r)^(k-1) 
# Defining m_k 
x<-seq(0,1,length.out=10000000) 
x.interval<-x[2]-x[1] 
A.matrix<-matrix(data=NA,nrow=length(k),ncol=2)  
# Creates a 2-column, k-row matrix 
colnames(A.matrix)<-c("k","l_k")  
# Names columns of matrix 
options(digits = 22)  
# Changes number of decimal places stored 
for(i in 1:length(k)){ 
  print(i) 
  A.matrix[i,1]<-i 
  # Stores value of i [i: 1->k] as first-column, kth row entry of matrix 
  A.matrix[i,2]<-log(1/(1-((gamma(1+1/m_k[i]))^2 / gamma(1+2/m_k[i]))),base=r) 
  # Stores l_k value as second-column, kth row entry of matrix 
} 
A.matrix[2:100,2]-A.matrix[1:99,2] 
# Finds values of l_{k+1}-l_{k} 
This code first specifies an integer value for the parameter k, signifying how many terms of the sequence lk we are 

collecting. It then assigns a real number number value to the parameter r. It then creates a matrix wherein the value of i is 
stored in the first column and the value of li+1 - li is stored in the second column. Using this code, we were able to track 
the value of lk+1 - lk. Additionally, we wrote some R code to plot the sequence lk against its index k. 

 
 

RESULTS AND DISCUSSION 
Figure 6 below displays some of the data for the sequence nk obtained from R code. 

 
 

 
Figure 6a. r = 1.5                                                   Figure 6b. r = 2.5 

Figure 6: R Data for nk sequence 
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The data shown in Figure 6 supports the superellipse conjecture. This is because these (for k) graphs show a log-linear 
relationship between the values of k and nk. Moreover, since the slope of the graph is roughly ½, and the logarithm’s base is r, 
the data supports the conjecture’s claim that from nk to nk+1, there is roughly a proportional growth of r1/2, which is the same 
as √𝑟. Apart from 1.5 and 2.5, several other values of r were tested with the R code, and similar results were obtained in each 
case. 

Figures 7 and 8 below display data from the sequences Nk and Mk, respectively. 
 

 
    Figure 7a. r = 1.5                                                     Figure 7b. r = 2.5 

  Figure 7: R Data for sequence Nk 
 
 

 
    Figure 8a. r = 1.5                                                   Figure 8b. r = 2.5  

Figure 8: R Data for sequence Mk 
 

Figure 7 above shows data supporting our claim that lim
!→#

 Nk+1 / Nk  =  r. Similarly, Figure 8 shows data supporting our 
claim that lim

!→#
 Mk+1 / Mk  =  √𝑟. In terms of proving the superellipse conjecture, the behavior of the sequence Mk is more 

promising. In order to prove that the conjecture is true, we want to say something about the behavior of the sequence nk. The 
behavior of the sequence nk is determined by two things: the area formula A(u), and the requirement that A(nk) = 1 - 1/rk. By 
constructing Alb(u) and Aub(u) and fixing the second requirement, we had hoped to develop a “squeeze” proof. Roughly 
speaking, the proof would obtain an upper bound formula Fub(u) and a lower bound formula Flb(u) such that sequences using 
these area formulas would have the same behavior as the sequence nk. The proof would then need to show that because Flb(u) 
≤ A(u) ≤ Fub(u), and the resulting sequences each have limit ratios of √𝑟, it follows that nk, a sequence constructed from an 
area formula squeezed between the other two would have to have this same limit ratio. 

We were unable to construct a satisfactory lower bound Flb(u) formula. Our best attempt, Alb(u), produced the sequence 
Nk, and we found that lim

!→#
 Nk+1 / Nk  =  r. As such, we were not able to construct a formal proof of the conjecture in this 

desired manner. That is not to say this approach to proving the conjecture is useless. Recall that the Aub(u) formula produced 
the sequence Mk, which displayed our desired rate of growth. To continue with this method of proof, future research on this 
conjecture will need to construct a satisfactory Flb(u). 
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Figure 9 shows data collected from our other approach: reversing the process. For r = 1.5, 2, it plots the sequence lk 
against each integer k, which was obtained from R code which was nearly identical to code for plotting presented earlier. 

 
 

 
Figure 9a. r = 1.5                                                      Figure 9b. r = 2 

Figure 9: R Data for the sequence lk  
 

As the plots in Figure 9 show, lk was found to have a roughly linear relationship with the index value k. This data 
supported our claim about the sequences lk and mk. When mk grows at an exactly exponential rate, lk has a roughly linear 
relationship with the index k. Although we did not obtain a formal proof that this relationship holds, doing so may prove 
useful in future research into the conjecture.  

 
 

LIMITATIONS 
The most significant limitation in analyzing this conjecture is its involvement with the gamma function Γ. The 

gamma function has no closed form representation. This makes it extremely difficult to extrapolate any useful 
information from an equation involving the gamma function. Since such an equation is what defines the sequence nk 
in the superellipse conjecture, circumventing the obstacle of computing with the gamma function is crucial in 
obtaining a proof. This is precisely what motivated our different approaches. Due to the difficulty of directly 
obtaining information about the sequence nk, we constructed related sequences Nk, Mk, and mk so that we could study 
this problem in other ways. 

In addition to the theoretical difficulties introduced by the gamma function, there were also some computational 
difficulties in collecting data. This was especially problematic when obtaining data for the sequences nk and lk. There 
were two things contributing to this issue. One contributing factor is the function A(u). This function maps arbitrarily 
large real numbers to the interval (½,1). Since the formula for A(u) uses the gamma function, its outputs can only be 
approximated. If these approximations are not sufficiently precise, round-off errors can start to occur. This brings us 
to the other factor: R’s decimal precision. R can usually only store values to 22 decimal places of precision. This was 
usually sufficient for accurately calculating some terms of the sequence, but roundoff errors eventually occurred. In 
testing several distinct values for the parameter r, we found that the greater the value of r, the sooner the sequences 
would display these errors. Future projects on this conjecture can mitigate this computational limitation by writing 
similar code to calculate the sequences nk and lk using software that utilizes higher precision. 
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