2004 Nobel Laureate in Physics

David Gross, Ph.D.

David Gross is the Frederick Gluck Professor of Theoretical Physics and former Director of the Kavli Institute for Theoretical Physics at UCSB. He received his Ph.D. in 1966 at UC Berkeley and was previously Thomas Jones Professor of Mathematical Physics at Princeton University. He has been a central figure in particle physics and string theory. His discovery, with his student Frank Wilczek, of asymptotic freedom—the primary feature of non-Abelian gauge theories—led Gross and Wilczek to the formulation of Quantum Chromodynamics, the theory of the strong nuclear force. This completed the Standard Model, which details the three basic forces of particle physics—the electromagnetic force, the weak force, and the strong force. Gross was awarded the 2004 Nobel Prize in Physics, with Politzer and Wilczek, for this discovery. He has also made seminal contributions to the theory of Superstrings, a burgeoning enterprise that brings gravity into the quantum framework. His awards include the Sakurai Prize, MacArthur Prize, Dirac Medal, OSCar Klein Medal, Harvey Prize, the EPS Particle Physics Prize, the Grande Medaille d’Or and the Nobel Prize in Physics in 2004. He holds honorary degrees from the U.S., Britain, France, Israel, Brazil, Belgium and China. His membership includes the US National Academy of Science, the American Academy of Arts and Sciences, the American Philosophical Society, the Indian Academy of Science and the Chinese Academy of Science.

Lectures

Public Lecture: THE FRONTIERS OF FUNDAMENTAL PHYSICS
At the frontiers of physics we search for the principles that might unify all the forces of nature and we strive to understand the origin and history of the universe. In this lecture Gross will describe some of the questions we ask and some of the proposed answers. He will also discuss what it might mean to have a final theory of fundamental physics and whether we are capable of discovering it.

Physics Seminar: The Enduring Legacy of Albert Einstein
As we celebrate 100 years of General Relativity, Gross will discuss Einstein’s enduring legacy. The Einsteinian revolution changed forever the way we think about space-time and the universe and still shapes current research at the frontiers of fundamental physics and cosmology.

This publication was funded by the University of Wisconsin-La Crosse Foundation Inc.
Sept. 24-25, 2015

Thursday, Sept. 24, 2015

PUBLIC LECTURE
4:30 p.m. Reception
Refreshments served in the
Cameron Hall of Nations
Centennial Hall

5 p.m. The Frontiers Of
Fundamental Physics
Skogen Auditorium A Room 1400
Centennial Hall

Friday, Sept. 25, 2015

PHYSICS SEMINAR
3:20 p.m. The Enduring Legacy of
Albert Einstein
Skogen Auditorium A Room 1400
Centennial Hall

All events are open to the public, but we suggest making arrangements in advance by filling out and sending the form attached. Reserved seats will only be held up until 15 minutes prior to the start of each lecture.

Groups of five or more must make special arrangements with the Foundation.

If parking on campus, please use the metered parking stalls.

For further information contact:
www.uwlax.edu/physics
Gubbi Sudhakaran, Ph.D., Physics Department
University of Wisconsin-La Crosse
1725 State St. | La Crosse, WI 54601 USA
608.785.8431
email: gsudhakaran@uwlax.edu

2004 Nobel Laureate
David Gross
Co-sponsored by the
University of Wisconsin-La Crosse Foundation Inc.,
Department of Physics
College of Science and Health
Wettstein's