MIC 230 Fundamentals of Microbiology -001UW-La Crosse


Instructor: Bonnie Jo Bratina, 3029 Cowley Hall


Lecture Outlines


Introduction, Scope and History of Microbiology

I. What is microbiology?

II. Organisms encompassed

A.  Bacteria

B.  Viruses

C.  Protozoa

D.  Fungi

E.  Algae

     III. Impact of microbes

              A.  Historical and current infectious diseases

      1.  Smallpox

      2.  Bubonic Plague

      3.  Tuberculosis/Anthrax – Robert Koch

      4.  Polio

      5.  Influenza

      6.  Malaria/Yellow Fever

      7.  Emerging diseases like Ebola, Avian flu

B.  Other impacts, many beneficial

      1.  Oxygen in atmosphere

      2.  Food production

      3.  Biotechnology – commercial synthesis

      4.  Food preservation techniques

      5.  Hygiene – Ignaz Semmelweis

      6.  Antibiotic production

      7.  Active enzymes

      8.  Reflective paint

      9.  Natural gas

      10. Decomposition – composting, wasterwater treatment, bioremediation

      11. Biological control – Bt toxin

      12. Crop rotation – Sergei Winogradsky


Early Earth, Evolution and Classification of Life

I.   Early earth conditions – 4.5 – 4.6 bya

II.  Life timeline  – RNA world

III. Characteristics of life

A. Metabolism

B. Heredity mechanism

IV. Key Development – porphyrin ring

A. Forerunner of chlorophyll, cytochromes

B. Oxgenated atmosphere

C. Ozone layer

V. Theory of endosymbiosis

A. Mitochondria

B. Chloroplast

VI. Classification

A. Plant vs. animal

B. Robert Hooke - cells

C. Anton von Leeuwenhoek - microbes

D. Louis Pasteur – spontaneous generation disproven

E. Electron Microscopy – prokaryotes

F. Taxonomy

G. Phylogeny - domains

H. Classification of prokaryotes

1.  Taxonomy

2.  Morphology

3.  Arrangement

4.  Biochemistry

5.  Other

6.  Phylogeny-based


Cell Envelope


I.    Basic biological molecules

A.  Carbohydrates

B.  Proteins

C. Nucleic acids

D.  Lipids

II.   Cell size

III.  Cell envelope

A.  Cytoplasmic membrane – fluid mosaic model

1.  Structure – Bacteria

2.  Structure – Archaea

3.  Function – similar for all 3 domains

            a.    Permeability barrier

            b.   Protein anchor/transport

                        i.   Passive vs. active

                        ii.  Classes of transport systems

                        iii. Classes of transport proteins


B.  Cell walls

1.  Function

2.  Bacteria – 2 types

3.  Structure – Bacteria           

            a.    Backbone - amino sugars

            b.   Amino acid chains

            c.   Stability

            d.  Other fractions

                        i.  Teichoic acid

                        ii. Outer membrane/periplasmic space

4.  Structure – Archaea

C.  Outer layers/glycocalyx

1.  Capsule

               2.  Slime layer

               3. S layers


Motility, cytoplasm and inclusions


I.      Motility using a flagella

A. Structure

B.    Energy source

C.    Arrangement

D.   Movement

1.     Temporal gradient

2.     Chemotaxis 

II.    Other motilities

A.          Gliding

B.          Gas vacuoles

C.          Spirochetal motility

D.          Twitching


III.  Fimbrae


IV.  Cytoplasm

A. Small molecules

B.    Ribosomes/RNA

C.    DNA

D.   Inclusion bodies

1.     Storage products

a. Carbon and energy

                                                               i.     Poly-b-hydroxybutyric acid (PHB)

                                                             ii.     Glycogen or starch

b.     Phosphate

c. Elemental sulfur (So)

2.     Other inclusions

a. Magnetosomes

b.     Gas vacuoles


V.   Endospores

A.          Organisms that make them

B.          Purpose

C.          Resistance

D.          Problems associated

E.          Structure

F.          Release

G.           Other resting stages


Nutrition and Growth 

I.      Goal of bacteria


II.    Metabolism

A.          Catabolism

B.          Anabolism

C.          Nutrient classifications

1.         Energy

2.         Carbon

D.          Nutrient requirements

III.  Growth

A. Cell Division

1.         Binary fission

2.         Budding

3.         Fragmentation

4.         Reproductive spores

B. Growth Curve

1.         Growth rate

2.         Graphing

3.         Phases

C. Batch (closed system) vs. continuous system

D.   Ways to measure growth

1.         Direct counts

2.         Viable counts

3.         Weight/biomass

4.         Turbidity





I.  How cells get energy  - energy units -kcal or kJ (kilojoules)


II.  Energy - ability to do work

            A.  kinetic

            B.  potential -


II.  Enzymes


III.  Oxidation - Reduction (Redox)

            A.  Key to understanding biological redox!

            B.  Reduction -- gain of e_

            C.  Oxidation -- loss of e_   (Ole{)  NOTE:  not gain/loss H+

            D.  Half reactions


            F.  Therefore half rxns don{t occur alone - must be coupled to form complete (1) reaction

            G. e_  carriers

H.  Reduction potential { tower


IV.  Energy carriers

A.   High E bond

B.    Energized membrane


V.  Strategies for energy generation

A.  Fermentation

B.  Respiration

1.  aerobic

2.  anaerobic

C.  Photosynthesis

            1.  oxygenic

            2.  anoxygenic






I.            Breakdown  of glucose as an example

            A.            Oxidation half reaction { glycolysis most common

            B.            glucose 2 pyruvate,  2 electrons and 2 net ATP

            C.            substrate level phosphorylation

            D.            type of catabolism determined by where electrons end up


II.            Fermentation

A. Definition

B. Variety of compounds fermentable

C. Possible earliest form of catabolism

D. Problems faced by fermenters and how solved

1.    disposal of electrons

2.    low energy yield

E.    Habitats where found

F.    Waste products and their uses






I.            Definition

A.  aerobic

B.  anaerobic


II.            Characteristics


III.            Three parts of respiration

A. Oxidation - biochemical pathway that generates electrons

B. Electron transport

1.    Alternating 2 types of membrane bound electron carriers

2.    Pumping protons to generate proton motive force (pmf)

C. Trapping energy in usable form

1.    Oxidative phosphorylation

2.    ATP synthase

3.    Chemiosmosis